首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
2.
Colchicine is a tubulin‐binding natural product isolated from Colchicum autumnale. Here we report the in vitro anticancer activity of C‐ring modified semi‐synthetic derivative of colchicine; N‐[(7S)‐1,2,3‐trimethoxy‐9‐oxo‐10‐(4‐phenyl‐piperidin‐1‐yl)‐5,6,7,9 tetrahydrobenzo[a]heptalen‐7‐yl]acetamide ( 4h ) on colon cancer HCT‐116 cell line. The compound 4h was screened for anti‐proliferative activity against different human cancer cell lines and was found to exhibit higher cytotoxicity against colon cancer cell lines HCT‐116 and Colo‐205 with IC50 of 1 and 0.8 μM respectively. Cytotoxicity of the compound to the normal fR2 breast epithelial cells and normal HEK293 human embryonic kidney cells was evaluated in concentration and time‐dependent manner to estimate its selectivity for cancer cells which showed much better selectivity than that of colchicine. Compound 4h induced cell death in HCT‐116 cells by activating apoptosis and autophagy pathways. Autophagy inhibitor 3‐MA blocked the production of LC3‐II and reduced the cytotoxicity in response to 4h , but did not affect apoptosis, suggesting thereby that these two were independent events. Reactive oxygen species scavenger ascorbic acid pretreatment not only decreased the reactive oxygen species level but also reversed 4h induced cytotoxicity. Treatment with compound 4h depolymerized microtubules and the majority of cells arrested at the G2/M transition. Together, these data suggest that 4h has better selectivity and is a microtubule depolymerizer, which activates dual cell‐death machineries, and thus, it could be a potential novel therapeutic agent in cancer therapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Previously, we have synthesized a novel cyclin‐dependent kinase (CDK) inhibitor, 2‐[1,1′biphenyl]‐4‐yl‐N‐[5‐(1,1‐dioxo‐1λ6‐isothiazolidin‐2‐yl)‐1H‐indazol‐3‐yl]acetamide (BAI) and reported its anti‐cancer activity in head and neck cancer cells. In this study, we further evaluated the effect of BAI on growth of various human cancer cell lines, including A549 (nonsmall cell lung cancer), HCT116 (colon), and Caki (kidney). Profoundly, results of XTT and clonogenic assays demonstrated that BAI at nanomolar concentrations (20–60 nM) inhibited growth of A549, HCT116, and Caki cells, suggesting the anti‐cancer potency. We show that BAI induced a dose‐dependent apoptotic cell death in these human cancer cells, as measured by fluorescence‐activated cell sorting (FACS). Interestingly, further biochemical analysis showed that treatment with BAI at 20 nM induced apoptosis in A549 cells in association with activation of caspases, cleavage of phospholipase C‐γ1 (PLC‐γ1), and inhibition of Akt in A549 cells. Importantly, pharmacological inhibition study revealed that pretreatment with z‐VAD‐fmk, a pan caspase inhibitor strongly blocked the BAI‐induced apoptosis in A549 cells. Transfection analysis with Akt cDNA encoding constitutively active Akt further addressed the significance of Akt inhibition in the BAI‐induced apoptosis in A549 cells. Notably, disruption of the PI3K/Akt pathway by LY294002, a PI3K/Akt inhibitor potentiated apoptosis in A549 cells by BAI at a subcytotoxic concentration. These findings collectively suggest that BAI potently inhibits growth of A549, HCT116, and Caki cells, and that the BAI‐induced apoptosis in A549 cells is associated with activation of caspases, and inhibition of Akt. J. Cell. Biochem. 114: 282–293, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.

Background

In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells.

Methods

Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate.

Results

We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571.

Conclusions

All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.  相似文献   

6.
Aims: Research is to identify the bioactive secondary metabolites produced by Aspergillus sp. KMD 901 isolated from marine sediment and to assess their apoptosis‐inducing effects. Methods and Results: Aspergillus sp. KMD 901 was isolated from marine sediment obtained from the East Sea of Korea. An ethyl acetate extract of KMD 901 exhibited potent cytotoxic activity towards five cancer cell lines (HCT116, AGS, A549, MCF‐7 and HepG2). Sequencing of the internal transcribed spacer (ITS) region in this strain allowed us to identify KMD 901 as a strain of Aspergillus versicolor. The cytotoxic compounds from Aspergillus sp. KMD 901 were purified by reversed‐phase high‐performance liquid chromatography and identified as diketopiperazine disulfides through spectroscopic analyses including extensive 2D NMR and mass spectrometry. The diketopiperazine disulfides were found to induce apoptosis in HCT116 cells based on cell morphology, DNA fragmentation observed by agarose gel electrophoresis, Annexin‐V/PI staining using a flow cytometer and cleavage of poly (ADP‐ribose) polymerase (PARP), caspase‐3, caspase‐8, caspase‐9 and Bcl‐2 family proteins (Bcl‐2, Bcl‐xL and Bax) using Western blotting analysis. Further study using an in vivo xenograft model showed inhibitory effects of acetylapoaranotin ( 2 ) on tumour proliferation. Conclusion: A new diketopiperazine disulfide, deoxyapoaranotin ( 3 ), along with previously described acetylaranotin ( 1 ) and acetylapoaranotin ( 2 ) was separated from Aspergillus sp. KMD 901 and found to have direct cytotoxic and apoptosis‐inducing effects towards HCT116 colon cancer cell lines. Significance and Impact of the Study: These results suggest that the diketopiperazine disulfides produced from Aspergillus sp., KMD 901, could be candidates for the development of apoptosis‐inducing antitumour agents. Also, this study indicates that marine natural products as potential source of pharmaceuticals.  相似文献   

7.
目的:探讨NDRG1对体外培养的人肠癌细胞系失巣凋亡的影响。方法:采用慢病毒系统将NDRG1表达单元转入人肠癌细胞系SW620、HCT8中,建立相应的过表达稳定细胞系;通过siRNA的方法干扰HCT116和LOVO细胞系中NDRG1的表达,分别在非贴壁培养的情况下培养48小时,采用流式细胞术和TUNEL染色检测细胞的凋亡情况。结果:在贴壁培养条件下,NDRG1过表达并没有显著影响肠癌细胞的生长及增殖,而NDRG1特异性siRNA干扰HCT116细胞中NDRG1的表达后,其凋亡率无明显变化(P0.05)。在悬浮培养条件下,NDRG1过表达的肠癌细胞的失巢凋亡率显著低于正常对照组(P0.05),而用三种不同的siRNA干扰HCT116及LOVO细胞中NDRG1的表达后,其失巢凋亡率均显著高于正常对照组(P0.05)。结论:NDRG1在体外可抑制人肠癌细胞的失巢凋亡。  相似文献   

8.
Three new compounds were isolated from Artemisia anomala, and their structures were determined using HR-ESI-MS, IR, UV, and NMR. The antitumor activities of the three compounds were evaluated in the human lung cancer cell line A549 and the human colorectal cancer cell line HCT116. The results showed that compound 2 significantly inhibited cell viability and proliferation and promoted apoptosis of HCT116 and A549 cells, suggesting that compound 2 may be used for colon and lung cancer treatments in clinical practice.  相似文献   

9.
The development of cancer in patients with schizophrenia is affected by genetic and environmental factors and antipsychotic medication. Several studies found that schizophrenia was associated with decreased risk of some cancers, and the neuroleptic medication might help to reduce the risk of colorectal cancer (CRC). Phenothiazine drugs including trifluoperazine (TFP) are widely used antipsychotic drugs and showed some antitumor effects, we here investigated the potential application of TFP in the treatment of colon cancer. A series doses of TFP were treated to the colon cancer cell line HCT116 and the inhibitory concentration (IC50) of TFP for HCT116 was determined by cell counting kit-8. The results indicated that the treatment of TFP impaired the cell vitality of HCT116 in a dose- and time-dependent manner. Meanwhile, the Edu assay demonstrated that the proliferation was also inhibited by TFP, which was accompanied with the induction of apoptosis and autophagy. The expression of CCNE1, CDK4, and antiapoptosis factor BCL-2 was downregulated but the proapoptosis factor BAX was upregulated. The autophagy inhibitor chloroquine could significantly reverse the TFP-induced apoptosis. Moreover, the ability of migration and invasion of HCT116 was found to be suppressed by TFP, which was associated with the inhibition of epithelial-mesenchymal transition (EMT). The function of TFP in vivo was further confirmed. The results showed that the administration of TFP remarkably abrogated the tumor growth with decreased tumor volume and proliferation index Ki-67 level in tumor tissues. The EMT phenotype was also confirmed to be inhibited by TFP in vivo, suggesting the promising antitumor effects of TFP in CRC.  相似文献   

10.
11.
Pomegranate (Punica granatum L.) fruits are widely consumed as juice (PJ). The potent antioxidant and anti-atherosclerotic activities of PJ are attributed to its polyphenols including punicalagin, the major fruit ellagitannin, and ellagic acid (EA). Punicalagin is the major antioxidant polyphenol ingredient in PJ. Punicalagin, EA, a standardized total pomegranate tannin (TPT) extract and PJ were evaluated for in vitro antiproliferative, apoptotic and antioxidant activities. Punicalagin, EA and TPT were evaluated for antiproliferative activity at 12.5-100 microg/ml on human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620) and prostate (RWPE-1, 22Rv1) tumor cells. Punicalagin, EA and TPT were evaluated at 100 microg/ml concentrations for apoptotic effects and at 10 microg/ml concentrations for antioxidant properties. However, to evaluate the synergistic and/or additive contributions from other PJ phytochemicals, PJ was tested at concentrations normalized to deliver equivalent amounts of punicalagin (w/w). Apoptotic effects were evaluated against the HT-29 and HCT116 colon cancer cell lines. Antioxidant effects were evaluated using inhibition of lipid peroxidation and Trolox equivalent antioxidant capacity (TEAC) assays. Pomegranate juice showed greatest antiproliferative activity against all cell lines by inhibiting proliferation from 30% to 100%. At 100 microg/ml, PJ, EA, punicalagin and TPT induced apoptosis in HT-29 colon cells. However, in the HCT116 colon cells, EA, punicalagin and TPT but not PJ induced apoptosis. The trend in antioxidant activity was PJ>TPT>punicalagin>EA. The superior bioactivity of PJ compared to its purified polyphenols illustrated the multifactorial effects and chemical synergy of the action of multiple compounds compared to single purified active ingredients.  相似文献   

12.
A new cochlioquinone derivative, cochlioquinone F ( 1 ), as well as three known compounds, anhydrocochlioquinone A ( 2 ), isocochlioquinone A ( 3 ), and isocochlioquinone C ( 4 ), were isolated from the PDB (potato dextrose broth) culture of the phytopathogenic fungus Bipolaris luttrellii. The structure of 1 was elucidated on the basis of NMR techniques. The apoptosis‐inducing effects of compounds 1 – 4 were evaluated against HCT116 cancer cells. Compound 2 exhibited the strongest activity in inducing apoptosis on HCT116 cells within the range of 10–30 μM . In addition, the caspase activation, the release of cytochrome c from mitochondria, and the downregulation of Bcl‐2 protein in HCT116 cells treated with compound 2 were detected.  相似文献   

13.
Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.  相似文献   

14.
MS-275 is a synthetic benzamide derivative of the histone deacetylase inhibitor and is currently in phase I/II clinical trials. Many reports have shown that the anti-tumor activity of MS-275 in several types of cancer is mainly attributable to its capacity to induce the apoptotic death of tumor cells. It remains unclear if autophagy is involved in MS-275 treatment of cancer cells. Here, we first show that MS-275 induces human colon cancer cell HCT116 autophagy as well as apoptosis. Short-term treatment (24h) induced HCT116 cells to undergo autophagy with dependence on intracellular reactive oxygen species production and ERK activation. The activated reactive oxygen species/ERK signal promoted Atg7 protein expression, which triggered MS-275-induced cancer cell autophagy. However, after prolonged treatment with MS-275 (over 48h), autophagic cells turned apoptotic, which was also dependent on reactive oxygen species generation. Interestingly, we found that p38 MAP kinase played a vital role in the switch from autophagy to apoptosis in MS-275-induced human colon cancer cells. High expression of p38 induced cell autophagy, but low expression resulted in apoptosis. In addition, observations in vivo are strongly consistent with the in vitro results. Therefore, these findings extend our understanding of the action of MS-275 in inducing cancer cell death and suggest that it may be a promising clinical chemotherapeutic agent with multiple effects.  相似文献   

15.
Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs.  相似文献   

16.
In this report, we demonstrate that a 50% ethanol extract of the plant-derived product, Chios mastic gum (CMG), contains compounds which inhibit proliferation and induce death of HCT116 human colon cancer cells in vitro. CMG-treatment induces cell arrest at G(1), detachment of the cells from the substrate, activation of pro-caspases-8, -9 and -3, and causes several morphological changes typical of apoptosis in cell organelles. These events, furthermore, are time- and dose-dependent, but p53- and p21-independent. Apoptosis induction by CMG is not inhibited in HCT116 cell clones expressing high levels of the anti-apoptotic protein, Bcl-2, or dominant-negative FADD, thereby indicating that CMG induces cell death via a yet-to-be identified pathway, unrelated to the death receptor- and mitochondrion-dependent pathways. The findings presented here suggest that CMG (a) induces an anoikis form of cell death in HCT116 colon cancer cells that includes events associated with caspase-dependent pathways; and (b) might be developed into a chemotherapeutic agent for the treatment of human colon and other cancers.  相似文献   

17.
18.
Securin and γ‐H2AX have been shown to regulate cell survival and genomic stability. However, it is still unknown how the expression and regulation of these proteins is altered following treatment with baicalein, a natural flavonoid extracted from the Scutellaria baicalensis root. In the present study, we investigate the possible roles of securin and γ‐H2AX in baicalein‐induced cancer cell death. Baicalein reduced cell viability in a variety of human cancer cell lines, including bladder, cervical, colon, and lung cancer cells. Interestingly, baicalein treatment (40–80 µM for 24 h) markedly inhibited securin expression, while the levels of γ‐H2AX were elevated. Abnormal spindle formation and chromosomal segregation were induced by baicalein. Furthermore, wild type HCT116 cancer cells had a higher incidence of cytotoxicity and apoptosis than securin‐null HCT116 cells following treatment with baicalein. In contrast, baicalein increased the levels of γ‐H2AX to a similar extent in both cell types. Transfection with H2AX siRNA further increased baicalein‐induced cell death. Additionally, blockade of the AKT pathway by treatment with wortmannin or AKT shRNA lowered the levels of γ‐H2AX and enhanced cytotoxicity in baicalein‐treated cells. Taken together, our findings suggest that the opposing effects of baicalein on securin and γ‐H2AX levels may be involved in the regulation of cell viability and genomic stability by this compound. J. Cell. Biochem. 111: 274–283, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Dioscin shows various pharmacological effects. However, its activity on colorectal cancer is still unknown. The present work showed that dioscin significantly inhibited cell proliferation on human HCT‐116 colon cancer cells, and affected Ca2+ release and ROS generation. The content of nitric oxide (NO) and its producer inducible NO synthase (iNOS) associated with DNA damage and aberrant cell signaling were assayed using the kits. DNA damage and cell apoptosis caused by dioscin were also analyzed through single‐cell gel electrophoresis and in situ terminal deoxynucleotidyl transferase dUTP nick‐end labeling assays. The results showed that dioscin increased the levels of NO and inducible NO synthase. The comet length in dioscin‐treated groups was much longer than that of the control group, and the number of terminal deoxynucleotidyl transferase dUTP nick‐end labeling positive cells (apoptotic cells) was significantly increased by the compound (p < 0.01). Furthermore, dioscin caused mitochondrial damage and G2/M cell cycle arrest through transmission electron microscopy and flow cytometry analysis, respectively. To study the cytotoxic mechanism of dioscin, an iTRAQ‐based proteomics approach was used. There were 288 significantly different proteins expressed in response to dioscin, which were connected with each other and were involved in different Kyoto Encyclopedia of Genes and Genomes pathways. Then, some differentially expressed proteins involved in oxidative phosphorylation, Wnt, p53, and calcium signaling pathways were validated by Western blotting and quantitative real‐time PCR assays. Our work elucidates the molecular mechanism of dioscin‐induced cytotoxicity in colon cancer cells, and the identified targets may be useful for treatment of colorectal cancer in future.  相似文献   

20.
There is emerging evidence that dietary factors can prevent cancer by affecting the process of carcinogenesis. Flavonoids present in vegeterian food possess antioxidant activities, have scavenging effects on activated carcinogens and mutagens, affect cell cycle progression and alter gene and protein expression. We report here that flavone, the core structure of the flavone subgroup, potently inhibits proliferation and induces apoptosis in HCT-116 colon cancer cells. Flavone induces the activation of caspases 2, 3, 8, 9 and 10 and a decrease of mitochondrial anti-apoptotic Bcl2 protein expression. Further analysis revealed that caspase 10 activation is mediated via caspase 1. Additionally, treatment with flavone results in release of the mitochondrial apoptosis-inducing factor (AIF), the key trigger of caspase-independent apoptosis, into the cytosol. In summary, our data show that flavone induces apoptosis in a caspase-dependent and -independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号