首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
2.
Existing literature demonstrates that fibroblast growth factor-2 (FGF-2) exerts opposing, contradictory biological effects on cartilage homeostasis in different species. In human articular cartilage, FGF-2 plays a catabolic and anti-anabolic role in cartilage homeostasis, driving homeostasis toward degeneration and osteoarthritis (OA). In murine joints, however, FGF-2 has been identified as an anabolic mediator as ablation of the FGF-2 gene demonstrated increased susceptibility to OA. There have been no previous studies specifically addressing species-specific differences in FGF-2-mediated biological effects. In this study, we provide a mechanistic understanding by which FGF-2 exerts contradictory biological effects in human versus murine tissues. Using human articular cartilage (ex vivo) and a medial meniscal destabilization (DMM) animal model (in vivo), species-specific expression patterns of FGFR receptors (FGFRs) are elucidated between human and murine articular cartilage. In the murine OA model followed by intra-articular injection of FGF-2, we further correlate FGFR profiles to changes in behavioral pain perception, proteoglycan content in articular cartilage, and production of inflammatory (CD11b) and angiogenic (VEGF) mediators in synovium lining cells. Our results suggest that the fundamental differences in cellular responses between human and murine tissues may be secondary to distinctive expression patterns of FGFRs that eventually determine biological outcomes in the presence of FGF-2. The complex interplay of FGFRs and the downstream signaling cascades induced by FGF-2 in human cartilage should add caution to the use of this particular growth factor for biological therapy in the future.  相似文献   

3.
Growth differentiation factor‐15 (GDF‐15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF‐15 and CCN2 using yeast two‐hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF‐15 and His‐tagged CCN2 produced in PC‐3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF‐15 blocks CCN2‐mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF‐15 inhibits CCN2‐mediated angiogenesis, activation of αVβ3 integrins and focal adhesion kinase (FAK) was examined. CCN2‐mediated FAK activation was inhibited by GDF‐15 and was accompanied by a decrease in αVβ3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF‐15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF‐15 may provide insight into the functional role of GDF‐15 in disease states. J. Cell. Biochem. 114: 1424–1433, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
Human mesenchymal stromal or stem cells (hMSCs) are being investigated for cell therapy in a wide range of diseases. MSCs are a potent source of trophic factors and actively remodel their immediate microenvironment through the secretion of bioactive factors in response to external stimuli such as oxygen tension. In this study, we examined the hypothesis that hypoxia influences hMSC properties in part through the regulation of extracellular milieu characterized by the extracellular matrix (ECM) matrices and the associated fibroblast growth factor‐2 (FGF‐2). The decellularized ECM matrices derived from hMSC culture under both hypoxic (e.g., 2% O2) and the standard culture (e.g., 20% O2) conditions have different binding capacities to the cell‐secreted and exogenenous FGF‐2. The reduced hMSC proliferation in the presence of FGF‐2 inhibitor and the differential capacity of the decellularized ECM matrices in regulating hMSC osteogeneic and adipogenic differentiation suggest an important role of the endogenous FGF‐2 in sustaining hMSC proliferation and regulating hMSC fate. Additionally, the combination of the ECM adhesion and hypoxic culture preserved hMSC viability under serum withdrawal. Together, the results suggest the synergistic effect of hypoxia and the ECM matrices in sustaining hMSC ex vivo expansion and preserving their multi‐potentiality and viability under nutrient depletion. The results have important implication in optimizing hMSC expansion and delivery strategies to obtain hMSCs in sufficient quantity with required potency and to enhance survival and function upon transplantation. J. Cell. Biochem. 114: 716–727, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
Tumor hypoxia was first described in the 1950s by radiation oncologists as a frequent cause of failure to radiotherapy in solid tumors. Today, it is evident that tumor hypoxia is a common feature of many cancers and the master regulator of hypoxia, hypoxia‐inducible factor‐1 (HIF‐1), regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy. Although the tumor hypoxia response mechanism leads to a multitude of downstream effects, it is angiogenesis that is most crucial and also most susceptible to molecular manipulation. The delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF‐1 in the regulation of angiogenic growth factors. In this article, we review what has been described about HIF‐1: its structure, its regulation, and its implication for cancer therapy and we focus on its role in angiogenesis and cancer. J. Cell. Biochem. 114: 967–974, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
The emergence of multidrug resistance (MDR) in cancer cells has made many of the currently available chemotherapeutic agents ineffective. However, the mechanism involved in mediating this effect is not yet fully understood. Here, we found the overexpression of type I insulin-like growth factor receptor (IGF-IR) in established colorectal MDR cells. Specific siRNA of IGF-IR decreases cell proliferation, exert synergistic effect with anticancer drugs. The downstream signaling of IGF-IR, PI3K/AKT pathway, was altered upon IGF-IR silencing. The expression of multidrug-resistance-associated protein 2 (MRP-2) was suppressed due to the nuclear translocation of nuclear factor-like 2 (Nrf2). Then the intracellular drug concentration was increased and the drug-resistant phenotype was reversed. Our findings improve current understanding of the biology of IGF-IR and MDR and have significant therapeutic implications on colorectal MDR cancer.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号