首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Primary and secondary (boosted) memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag)-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62LloCCR7hi CD27hi CD127hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2). Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.  相似文献   

2.
3.
Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice leads to experimental cerebral malaria (ECM) that is commonly associated with serious T cell mediated damage. In other parasitic infection models, inflammatory monocytes have been shown to regulate Th1 responses but their role in ECM remains poorly defined, whereas neutrophils are reported to contribute to ECM immune pathology. Making use of the recent development of specific monoclonal antibodies (mAb), we depleted in vivo Ly6Chi inflammatory monocytes (by anti-CCR2), Ly6G+ neutrophils (by anti-Ly6G) or both cell types (by anti-Gr1) during infection with Ovalbumin-transgenic PbA parasites (PbTg). Notably, the application of anti-Gr1 or anti-CCR2 but not anti-Ly6G antibodies into PbTg-infected mice prevented ECM development. In addition, depletion of Ly6Chi inflammatory monocytes but not neutrophils led to decreased IFNγ levels and IFNγ+CD8+ T effector cells in the brain. Importantly, anti-CCR2 mAb injection did not prevent the generation of PbTg-specific T cell responses in the periphery, whereas anti-Gr1 mAb injection strongly diminished T cell frequencies and CTL responses. In conclusion, the specific depletion of Ly6Chi inflammatory monocytes attenuated brain inflammation and immune cell recruitment to the CNS, which prevented ECM following Plasmodium infection, pointing out a substantial role of Ly6C+ monocytes in ECM inflammatory processes.  相似文献   

4.
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.  相似文献   

5.
Our laboratory reported previously that TNF receptor associated factor 3 (TRAF3) is a positive regulator of TCR signaling and T cell function. In the current study, we present new findings that reveal differential roles for TRAF3 in the regulation of CD4+ and CD8+ T cells. In response to TCR stimulation in vitro, TRAF3 has greater impact in CD4+ T cells than in CD8+ T cells. However, T cell-specific TRAF3 deficient mice (CD4Cre TRAF3fl°x/fl°x; T-TRAF3−/−) have a greater number of CD4+CD44hi effector/memory T cells than littermate control (LMC) mice, possibly due to an inefficient suppressive effect of TRAF3 deficient Foxp3+ regulatory T cells. In contrast, CD8+CD44hiCD62Lhi central memory (Tcm) cells are markedly reduced in T-TRAF3−/− mice in comparison to LMC mice, although CD8+CD44hiCD62Ll°w effector memory T (Tem) cells and naïve T cells (CD8+CD44l°wCD62Lhi) do not show significant differences in number. Importantly, TRAF3-deficient Tcm cells exhibit defective homeostasis due to impaired IL-15 signaling. These results indicate that the involvement of TRAF3 in IL-15 mediated signaling to T cells plays a previously unappreciated and critical role in CD8+ Tcm cell regulation and maintenance.  相似文献   

6.
IL-10 is a critical regulatory cytokine involved in the pathogenesis of visceral leishmaniasis caused by Leishmania donovani and clinical and experimental data indicate that disease progression is associated with expanded numbers of CD4+ IFNγ+ T cells committed to IL-10 production. Here, combining conditional cell-specific depletion with adoptive transfer, we demonstrate that only conventional CD11chi DCs that produce both IL-10 and IL-27 are capable of inducing IL-10-producing Th1 cells in vivo. In contrast, CD11chi as well as CD11cint/lo cells isolated from infected mice were capable of reversing the host protective effect of diphtheria toxin-mediated CD11c+ cell depletion. This was reflected by increased splenomegaly, inhibition of NO production and increased parasite burden. Thus during chronic infection, multiple CD11c+ cell populations can actively suppress host resistance and enhance immunopathology, through mechanisms that do not necessarily involve IL-10-producing Th1 cells.  相似文献   

7.
In spite of sufficient data on Neem Leaf Glycoprotein (NLGP) as a prophylactic vaccine, little knowledge currently exists to support the use of NLGP as a therapeutic vaccine. Treatment of mice bearing established sarcomas with NLGP (25 µg/mice/week subcutaneously for 4 weeks) resulted in tumor regression or dormancy (Tumor free/Regressor, 13/24 (NLGP), 4/24 (PBS)). Evaluation of CD8+ T cell status in blood, spleen, TDLN, VDLN and tumor revealed increase in cellular number. Elevated expression of CD69, CD44 and Ki67 on CD8+ T cells revealed their state of activation and proliferation by NLGP. Depletion of CD8+ T cells in mice at the time of NLGP treatment resulted in partial termination of tumor regression. An expansion of CXCR3+ and CCR5+ T cells was observed in the TDLN and tumor, along with their corresponding ligands. NLGP treatment enhances type 1 polarized T-bet expressing T cells with downregulation of GATA3. Treg cell population was almost unchanged. However, T∶Treg ratios significantly increased with NLGP. Enhanced secretion/expression of IFNγ was noted after NLGP therapy. In vitro culture of T cells with IL-2 and sarcoma antigen resulted in significant enhancement in cytotoxic efficacy. Consistently higher expression of CD107a was also observed in CD8+ T cells from tumors. Reinoculation of sarcoma cells in tumor regressed NLGP-treated mice maintained tumor free status in majority. This is correlated with the increment of CD44hiCD62Lhi central memory T cells. Collectively, these findings support a paradigm in which NLGP dynamically orchestrates the activation, expansion, and recruitment of CD8+ T cells into established tumors to operate significant tumor cell lysis.  相似文献   

8.
IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.  相似文献   

9.
The role of Type I interferon (IFN) during pathogenic HIV and SIV infections remains unclear, with conflicting observations suggesting protective versus immunopathological effects. We therefore examined the effect of IFNα/β on T cell death and viremia in HIV infection. Ex vivo analysis of eight pro- and anti-apoptotic molecules in chronic HIV-1 infection revealed that pro-apoptotic Bak was increased in CD4+ T cells and correlated directly with sensitivity to CD95/Fas-mediated apoptosis and inversely with CD4+ T cell counts. Apoptosis sensitivity and Bak expression were primarily increased in effector memory T cells. Knockdown of Bak by RNA interference inhibited CD95/Fas-induced death of T cells from HIV-1-infected individuals. In HIV-1-infected patients, IFNα-stimulated gene expression correlated positively with ex vivo T cell Bak levels, CD95/Fas-mediated apoptosis and viremia and negatively with CD4+ T cell counts. In vitro IFNα/β stimulation enhanced Bak expression, CD95/Fas expression and CD95/Fas-mediated apoptosis in healthy donor T cells and induced death of HIV-specific CD8+ T cells from HIV-1-infected patients. HIV-1 in vitro sensitized T cells to CD95/Fas-induced apoptosis and this was Toll-like receptor (TLR)7/9- and Type I IFN-dependent. This sensitization by HIV-1 was due to an indirect effect on T cells, as it occurred in peripheral blood mononuclear cell cultures but not purified CD4+ T cells. Finally, peak IFNα levels and viral loads correlated negatively during acute SIV infection suggesting a potential antiviral effect, but positively during chronic SIV infection indicating that either the virus drives IFNα production or IFNα may facilitate loss of viral control. The above findings indicate stage-specific opposing effects of Type I IFNs during HIV-1 infection and suggest a novel mechanism by which these cytokines contribute to T cell depletion, dysregulation of cellular immunity and disease progression.  相似文献   

10.
Human CD4 T cell recall responses to influenza virus are strongly biased towards Type 1 cytokines, producing IFNγ, IL-2 and TNFα. We have now examined the effector phenotypes of CD4 T cells in more detail, particularly focusing on differences between recent versus long-term, multiply-boosted responses. Peptides spanning the proteome of temporally distinct influenza viruses were distributed into pools enriched for cross-reactivity to different influenza strains, and used to stimulate antigen-specific CD4 T cells representing recent or long-term memory. In the general population, peptides unique to the long-circulating influenza A/New Caledonia/20/99 (H1N1) induced Th1-like responses biased toward the expression of IFNγ+TNFα+ CD4 T cells. In contrast, peptide pools enriched for non-cross-reactive peptides of the pandemic influenza A/California/04/09 (H1N1) induced more IFNγIL-2+TNFα+ T cells, similar to the IFNγIL-2+ non-polarized, primed precursor T cells (Thpp) that are a predominant response to protein vaccination. These results were confirmed in a second study that compared samples taken before the 2009 pandemic to samples taken one month after PCR-confirmed A/California/04/09 infection. There were striking increases in influenza-specific TNFα+, IFNγ+, and IL-2+ cells in the post-infection samples. Importantly, peptides enriched for non-cross-reactive A/California/04/09 specificities induced a higher proportion of Thpp-like IFNγIL-2+TNFα+ CD4 T cells than peptide pools cross-reactive with previous influenza strains, which induced more Th1 (IFNγ+TNFα+) responses. These IFNγIL-2+TNFα+ CD4 T cells may be an important target population for vaccination regimens, as these cells are induced upon infection, may have high proliferative potential, and may play a role in providing future effector cells during subsequent infections.  相似文献   

11.

Background

Alpha-dystroglycan (α-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, α-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins.

Methodology/Principal Findings

We report that expression of functionally glycosylated α-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4CD8 double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4+CD8+ double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus.

Conclusions/Significance

Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.  相似文献   

12.
Upon their recognition of antigens presented by the MHC, T cell proliferation is vital for clonal expansion and the acquisition of effector functions, which are essential for mounting adaptive immune responses. The CD98 heavy chain (CD98hc, Slc3a2) plays a crucial role in the proliferation of both CD4+ and CD8+ T cells, although it is unclear if CD98hc directly regulates the T cell effector functions that are not linked with T cell proliferation in vivo. Here, we demonstrate that CD98hc is required for both CD4+ T cell proliferation and Th1 functional differentiation. T cell-specific deletion of CD98hc did not affect T cell development in the thymus. CD98hc-deficient CD4+ T cells proliferated in vivo more slowly as compared with control T cells. C57BL/6 mice lacking CD98hc in their CD4+ T cells could not control Leishmania major infections due to lowered IFN-γ production, even with massive CD4+ T cell proliferation. CD98hc-deficient CD4+ T cells exhibited lower IFN-γ production compared with wild-type T cells, even when comparing IFN-γ expression in cells that underwent the same number of cell divisions. Therefore, these data indicate that CD98hc is required for CD4+ T cell expansion and functional Th1 differentiation in vivo, and suggest that CD98hc might be a good target for treating Th1-mediated immune disorders.  相似文献   

13.
Mounting effective innate and adaptive immune responses are critical for viral clearance and the generation of long lasting immunity. It is known that production of inhibitory factors may result in the inability of the host to clear viruses, resulting in chronic viral persistence. Fibrinogen-like protein 2 (FGL2) has been identified as a novel effector molecule of CD4+CD25+ Foxp3+ regulatory T (Treg) cells that inhibits immune activity by binding to FCγRIIB expressed primarily on antigen presenting cells (APC). In this study, we show that infection of mice with Lymphocytic Choriomeningitis Virus WE (LCMV WE) leads to increased plasma levels of FGL2, which were detected as early as 2 days post-infection (pi) and persisted until day 50 pi. Mice deficient in FGL2 (fgl2−/−) had increased viral titers of LCMV WE in the liver early p.i but cleared the virus by day 12 similar to wild type mice. Dendritic cells (DC) isolated from the spleens of LCMV WE infected fgl2−/− had increased expression of the DC maturation markers CD80 and MHC Class II compared to wild type (fgl2+/+). Frequencies of CD8+ and CD4+ T cells producing IFNγ in response to ex vivo peptide re-stimulation isolated from the spleen and lymph nodes were also increased in LCMV WE infected fgl2 −/− mice. Increased frequencies of CD8+ T cells specific for LCMV tetramers GP33 and NP396 were detected within the liver of fgl2−/− mice. Plasma from fgl2−/− mice contained higher titers of total and neutralizing anti-LCMV antibody. Enhanced anti-viral immunity in fgl2−/− mice was associated with increased levels of serum alanine transaminase (ALT), hepatic necrosis and inflammation following LCMV WE infection. These data demonstrate that targeting FGL2 leads to early increased viral replication but enhanced anti-viral adaptive T & B cell responses. Targeting FGL2 may enhance the efficacy of current anti-viral therapies for hepatotropic viruses.  相似文献   

14.
15.
The CD34+ MUTZ-3 acute myeloid leukemia cell line has been used as a dendritic cell (DC) differentiation model. This cell line can be cultured into Langerhans cell (LC) or interstitial DC-like cells using the same cytokine cocktails used for the differentiation of their primary counterparts. Currently, there is an increasing interest in the study and clinical application of DC generated in the presence of IFNα, as these IFNα-DC produce high levels of inflammatory cytokines and have been suggested to be more potent in their ability to cross-present protein antigens, as compared to the more commonly used IL-4-DC. Here, we report on the generation of IFNα-induced MUTZ-DC. We show that IFNα MUTZ-DC morphologically and phenotypically display characteristic DC features and are functionally equivalent to “classic” IL-4 MUTZ-DC. IFNα MUTZ-DC ingest exogenous antigens and can subsequently cross-present HLA class-I restricted epitopes to specific CD8+ T cells. Importantly, mature IFNα MUTZ-DC express CCR7, migrate in response to CCL21, and are capable of priming naïve antigen-specific CD8+ T cells. In conclusion, we show that the MUTZ-3 cell line offers a viable and sustainable model system to study IFNα driven DC development and functionality.  相似文献   

16.
17.
In vitro CD4+ T cell differentiation systems have made important contributions to understanding the mechanisms underlying the differentiation of naive CD4+ T cells into effector cells with distinct biological functions. Mature CD4+ T cells expressing CD8αα homodimers are primarily found in the intestinal mucosa of men and mice, and to a lesser extent in other tissues such as peripheral blood. Although CD4+CD8α+ T cells are easily identified, very little is known about their development and immunological functions. It has been reported, however, that CD4+CD8α+ T cells possess regulatory properties. In this report, we present a novel in vitro differentiation system where CD4+ T cells are stimulated to become CD4+CD8α+ T cells in the presence of TGF-β, IL-7 and IFN-γ, resulting in cells with very similar features as CD4+CD8α+ intraepithelial lymphocytes. This novel in vitro differentiation culture should provide a powerful and tractable tool for dissecting the differentiation and biological functions of CD4+CD8α+ T cells.  相似文献   

18.
19.
Idiopathic pulmonary fibrosis (IPF), one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68) infection of interferon gamma receptor deficient (IFNγR-/-) mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs—despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis—further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.  相似文献   

20.
Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4CD8 double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4+CD8+ double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4+CD8+ thymocytes, resulting in reduced numbers of CD4+CD8+ cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4+CD8+ cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号