首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为探讨食虫目小型哺乳动物的代谢产热和体温调节特征,本文采用封闭式流体压力呼吸仪测定了北小麝鼩在环境温度5 ~ 30℃下的静止代谢率(RMR),结果显示:在环境温度(Ta)为17 5 ~25℃ 的范围内,北小麝鼩的体温基本维持恒定,平均体温为36.55 ± 0.38℃ ;热中性区(TNZ) 为20 ~ 25℃ ;基础代谢率BMR 为5.46 ±0.23 (mLO2 /g· h),其中环境温度在25℃ 时静止代谢率最低,为4.84 ± 0.39 (mLO2 /g· h)。在5 ~ 25℃环境温度范围内,热传导值保持稳定;在此温度范围内,北小麝鼩的热传导率(C) 最低,平均为0.42 ± 0.01mLO2 / (g·h·℃ )。总之,北小麝鼩的产热和体温调节特征为较高的BMR,中等的热传导率,较低的体温和较宽的热中性区。这些特征可能与该物种体型小、夜行性、主要以无脊椎动物为食等生活习性密切相关。  相似文献   

2.
小型哺乳动物的体重和产热特征的季节调节对其生存至关重要。为探讨中缅树鼩的能量代谢适应特征随季节的变化,采用耗氧量测定、食物平衡法、形态测量等方法,分别对其冬季和夏季的基础代谢率(BMR)、非颤抖性产热(NST)、体温、体重、蒸发失水、能量收支和消化道的长度和重量进行了测定。中缅树鼩冬季体温、体重、基础代谢率、NST、蒸发失水散热分别为37. 9℃ ± 0.14℃ ,126.1 ± 2.1 g,42. 94 ± 2.65 J/g· h,54. 97 ±2.14 J/ g·h,5. 69 ±0.33 J/ g·h;夏季体温、体重、基础代谢率、NST、蒸发失水散热分别为38.5℃ ± 0. 27℃ ,106.9 ±5.1 g,28. 69 ±3.06 J/ g·h,47.43 ± 2.45 J / g·h,7.12 ±0. 57 J/ g·h;中缅树鼩的每日摄入能、消化能、可代谢能冬季均比夏季显著增加,消化道特征冬季和夏季存在变化,随着温度降低、食物质量下降,小肠长度和重量增加。这些结果表明:中缅树鼩在冬季,通过增加体重、基础代谢率和NST、能量摄入、消化能和可代谢能,降低蒸发失水等方式应对季节性环境变化。代谢产热和消化生理调节在季节性适应过程中具有重要地位。  相似文献   

3.
大绒鼠和高山姬鼠的体温调节和产热特征   总被引:22,自引:8,他引:14  
大绒鼠和高山姬鼠为横断山地区小型哺乳动物的代表。为探讨它们在该地区的生理生态适应特征,对其体温调节和产热特征进行了测定。代谢率采用封闭式流体压力呼吸计进行测定。结果表明:大绒鼠和高山姬鼠热中性区分别为25~32.5℃ 和25~30℃;平均体温分别为35.92 ±0.37℃和36.01±0.83℃,前者体温在20~27.5℃ 范围内维持恒定,后者体温在15~27.5℃范围内维持恒定;大绒鼠和高山姬鼠基础代谢率(BMR)分别为3.76±0.07 ml O2/g.h和4.58±0.09 ml O2/g.h;大绒鼠和高山姬鼠平均最小热传导(Cm) 分别为0.28±0.005 ml O2/g.h ℃ 和0.32±0.009 ml O2/g.h℃;热中性区内,大绒鼠和高山姬鼠的F值(RMR/ Kleiber 期望RMR)/(C/Bradley 期望C) 分别为0.88±0.05 和1.10±0.05。它们的产热特征和体温调节模式很可能反映了横断山地区小型啮齿动物的特征,即体温较低、维持体温稳定的环境温度范围较窄、BMR水平较高、热传导率高。高山姬鼠的体温、C值和BMR 都比大绒鼠的高,并且高山姬鼠维持体温稳定的环境温度范围比大绒鼠的宽,它们产热特征和体温调节模式的这些差异与其分类地位、生活习性和栖息生境等因素密切相关。  相似文献   

4.
横断山两种小型哺乳动物的蒸发失水与体温调节   总被引:9,自引:6,他引:3  
在实验室条件下测定了大绒鼠和高山姬鼠在不同温度下的蒸发失水与能量代谢.结果表明:大绒鼠和高山姬鼠的热中性区分别为22.5~30℃和25~30℃;平均体温分别为36.12℃和36.17℃;大绒鼠和高山姬鼠的基础代谢率(BMR)分别为2.99±0.48 ml O2/g ·h和4.24±0.50 ml O2/g·h;大绒鼠和高山姬鼠的平均最小热传导(Cm)分别为0.26±0.038 ml O2/g·h·℃和0.32±0.034 ml O2/g·h·℃;大绒鼠和高山姬鼠的蒸发失水随着温度增高而增加,大绒鼠的蒸发失水在30 ℃达高峰值,为10.32 mg H2O/g·h,高山姬鼠在35℃达高峰值,为14.57mg H2O/g·h;大绒鼠和高山姬鼠的热散失占总产热的比率随着温度增高而增加,大绒鼠在30 ℃达到最大为34.6%,高山姬鼠在35℃达到最大为37.5%.这些结果很可能反映出横断山小型啮齿类动物的特征,即体温相对较低,代谢水平较高,热传导也较高,蒸发失水在总产热中占有重要的地位.  相似文献   

5.
内蒙古浑善达克沙地小毛足鼠的能量代谢和体温调节   总被引:7,自引:5,他引:2  
战新梅  王德华 《兽类学报》2004,24(2):152-159
为了解小毛足鼠对沙漠生境的适应特征,对其能量代谢和体温调节特征进行了测定。代谢率采用封闭式流体压力呼吸计测定,非颤抖性产热用皮下注射去甲肾上腺素诱导,能量摄入采用食物平衡法测定。结果显示:小毛足鼠的热中性区为25~33℃,平均体温为35 7±0 1℃,最小热传导率为0 21±0 01mlO2/g·h·℃,基础代谢率为2 61±0 04mlO2/g·h,最大非颤抖性产热为8 53±0 28mlO2/g·h,非颤抖性产热范围(最大非颤抖性产热与基础代谢率的比率)为3 3。基础代谢率和非颤抖性产热都高于以体重为基础的期望值,最小热传导接近期望值。小毛足鼠的摄入能为2 26±0 12kJ/g·d;消化能为2 18±0 13kJ/g·d;消化率为97±0 2%;可代谢能为2 13±0 12kJ/g·d;可代谢能效率为94±1 2%。这些结果表明小毛足鼠对沙地生境的适应特征是:基础代谢率较高,体温相对较低,最小热传导率与期望值相当,热中性区较宽,下临界温度较低;较高的最大非颤抖性产热和非颤抖性产热范围以及较高的食物消化效率。  相似文献   

6.
为研究中缅树鼩(Tupaia belangeri)体温、代谢率和蒸发失水的日节律变化,采用植入式体温计测定了中缅树鼩24 h的体温,以及24 h中4个时间段(05:00~07:00时、11:00~13:00时、17:00~19:00时和23:00~01:00时)热中性区(30℃)的静止代谢率(RMR)、非颤抖性产热(NST)和蒸发失水(EWL)。结果显示,中缅树鼩的体温具有日节律变化,最高值和最低值分别出现在11:00时和03:00时,各为(39.45±0.26)℃和(36.34±0.24)℃;静止代谢率、非颤抖性产热和蒸发失水在4个时间段都有显著差异,表现出显著的日节律变化,代谢率在23:00~01:00时最大,O2含量为(2.58±0.04)ml/(g.h),在11:00~13:00时最小,O2含量为(2.28±0.09)ml/(g.h);非颤抖性产热在05:00~07:00时最大,O2含量为(3.08±0.14)ml/(g.h),在11:00~13:00最小,O2含量为(2.69±0.63)ml/(g.h);蒸发失水在17:00~19:00时最大,失水量为(3.60±0.31)mg/(g.h)。结果表明,体温的日节律变化主要与环境温度的日节律变化和下午出窝取食活动性增强有关;当夜晚环境温度相对较低的时候,通过增强静止代谢率和非颤抖性产热来增加产热,而白天环境温度相对较高的时候,通过增强蒸发失水散热来调节体温。  相似文献   

7.
采用开放式呼吸测定仪和数字式温度测量仪,在环境温度为5.0~35.0℃范围内,测定白头鹎的体温、代谢产热和蒸发失水(EWL),并计算其热传导等生理生态特征。结果表明:白头鹎的热热中性区为25.0~32.0℃;基础代谢率(BMR)为(3.67±0.03)ml O2 g-1 h-1,是体重预期值的64%。平均最小热传导为(0.15±0.00)ml O2 g-1 h-1-1,是体重预期值的124%。蒸发失水与产热的比率(EWL/RMR)在5.0~35.0℃时随着环境温度的升高而升高,在35℃时达到峰值,为(1.71±0.07)mg H2O/ml O2。代谢水和蒸发失水的比率(MWP/EWL)随环境温度上升而下降,在16.4℃时,MWP/EWL为1。这些结果表明了白头鹎具有较低的基础代谢率和高的热传导,蒸发失水在体温调节中占有重要的地位。  相似文献   

8.
为探讨不同地区中缅树鼩Tupaia belangeri的生理生态适应特征,对其体温调节和产热特征进行了测定,代谢率采用开放式呼吸仪进行测定。结果显示:A组中缅树鼩(禄劝县屏山镇)的体温(T b)与环境温度(T a)的关系为T b=38.0+0.07T a;B组中缅树鼩(昆明团结乡)的体温与环境温度的关系为T b=38.3+0.05T a;热中性区分别为3035℃和27.535℃和27.535℃;基础代谢率分别为(1.40±0.03)mL/(g·h)和(1.66±0.06)mL/(g·h);平均最小热传导为(0.14±0.0034)mL/(g·h·℃)和(0.15±0.0041)mL/(g·h·℃);热中性区内F值,即(RMR/Kleiber期望RMR)/(C/Bradley期望C),分别为0.91±0.01和1.14±0.03。结果表明,昆明中缅树鼩较禄劝中缅树鼩有较高的基础代谢率和较宽的热中性区,并且有较好的调节体温的能力;它们的这种产热特征和体温调节方式的不同可能与它们的生活史和栖息地环境有关。  相似文献   

9.
高山姬鼠幼仔的生长发育和产热特征   总被引:1,自引:0,他引:1  
根据高山姬鼠幼仔56 d 的生长资料初步分析了其生长发育规律;用电子天平测量了体重的增长过程; 用开放式呼吸仪测定了静止代谢率(Resting metabolic rate,RMR)、非颤抖性产热(Nonshivering thermogenesis, NST)以及肺皮蒸发失水(Evaporative water loss,EWL)。依据逻辑斯蒂曲线的拐点,高山姬鼠的体重生长可划分为加速生长相和减速生长相。幼仔的体温在17 日龄前逐渐升高,35 日龄时接近成体水平;静止代谢率和非颤抖性产热在17 日龄前随日龄逐渐增大,17 日龄后与体重成异速增长关系,RMR 在49 日龄时接近成体水平,NST 在6 日龄内即被激活;蒸发失水在断乳前较断乳后为高。高山姬鼠为典型的晚成性发育动物。高山姬鼠较短的妊娠期、较大的胎仔数、较长的哺乳期与其食物资源较丰富有关。  相似文献   

10.
动物能量代谢相关的生理生态特征与其地理分布密切相关。为探讨温州地区迁徙鸟类小杓鹬(Numenius minutus)的代谢产热特征及体温调节,本文在环境温度(Ta)5.0~42.5℃范围内,测定了小杓鹬的代谢率(Rm,以单位时间耗氧量表示,ml/h)和体温,并计算不同环境温度的热传导。结果显示:在环境温度为5~35℃的范围内,小杓鹬的体温维持相对恒定,平均体温为(42.8±0.10)℃;热中性区为27.5~40.0℃;在热中性区温度范围内,代谢率即基础代谢率为(221.31±6.01)ml/h,是体重预期值的141%;环境温度在5.0~27.5℃范围内,代谢率与环境温度(Ta,℃)呈负相关,回归方程为Rm=587.10﹣11.78 Ta;在5.0~27.5℃的环境温度范围内,小杓鹬的热传导最低,平均为(0.11±0.00)ml/(g·h·℃),是体重预期值的212%;代谢预期比和热传导预期比的比值(F值)为1.21,表明该物种有较好的体温调节能力。小杓鹬具有较高的体温和基础代谢...  相似文献   

11.
为探讨横断山区小型哺乳动物体温调节和产热特征的日节律,对横断山区固有种大绒鼠(Eothenomys mile-tus)在24h中4个时间段(05:00—07:00、11:00—13:00、17:00—19:00、23:00—01:00)的体温、基础代谢率、非颤抖性产热进行了测定。结果显示大绒鼠的体温、基础代谢率、非颤抖性产热在24h内具有节律性波动,且变化趋势基本同步;各生理参数的最高值和最低值都分别出现在05:00—07:00和11:00—13:00时间段。结果表明,横断山区大绒鼠的基础代谢率、非颤抖性产热在其体温调节的日节律中起到了重要作用,同时,大绒鼠其夜间体温调节、产热特征显著高于白天,以适应横断山日温差大、食物资源丰富的特征。  相似文献   

12.
为阐明大绒鼠幼仔的生长发育和代谢产热特征,本实验测定了1-49 日龄大绒鼠幼仔的体重、体温、静止代谢率(RMR)和非颤抖性产热(NST)。依据逻辑斯蒂曲线的拐点(24 d),大绒鼠的体重生长可划分为加速生长相和减速生长相,幼仔的体温在19 日龄前逐渐升高,22 日龄时接近成体水平;RMR 和NST分别在28日龄、19日龄前随日龄逐渐增加,RMR 在28日龄时接近成体水平,BAT 产热活性在7 日龄内被激活。结果表明,大绒鼠胎后发育及产热能力符合晚成性动物的一般特征,即具有短的妊娠期,较少的胎仔数,较长的哺乳期,这些特征对适应横断山特殊多变的环境条件具有重要意义。  相似文献   

13.
为阐明小型哺乳动物被毛的季节性变化及其在能量代谢和体温调节中的作用,测定了季节性驯化,以及不同光周期和温度驯化的黑线仓鼠的被毛重量、体温和能量收支。结果显示: (1)冬季黑线仓鼠的被毛重量和产热显著高于夏季;(2)短光照(8L∶16D)和低温(5℃ ) 对被毛生长的影响不显著; (3)与室温组(21℃ )相比,低温组(5℃ )摄入能、基础代谢率(BMR)、非颤抖性产热(NST) 、褐色脂肪组织细胞色素c 氧化酶活性和热传导率显著增加,而暖温组(30℃ )显著降低; (4)室温和低温下,剃毛导致摄入能、BMR、NST 和热传导率显著增加;结果表明:被毛的作用与环境温度有关,低温下被毛降低了能量需求,增强了动物应对低温环境的适应能力;被毛的适应性变化是独居的野生小型哺乳动物应对环境温度季节性波动的主要适应策略之一,在其能量代谢和体温调节中具有重要作用和意义。  相似文献   

14.
Most mammals are known to have clear circadian rhythms of body temperature (Tb) and metabolic rate. Large parts of the rhythms correspond to the oscillation of nonshivering thermogenesis (NST), dependent on visceral organ mass, and, affected by mass of brown adipose tissue (BAT). I tested whether: (1) a different levels of BMR result in respective changes of Tb values and the magnitude of daily RMR oscillations both within and below thermoneutrality; (2) the amplitude of daily variation of RMR depends on ambient temperature (Ta). I studied: (1) daily variation of body temperature at Ta of 23 °C, and (2) the rate of resting metabolism (RMR) within and below thermoneutrality at the time of minimum and increasing Tb (minimum and maximum NST capacity), in two lines of laboratory mice subjected to divergent, artificial selection toward high (HBMR) and low (LBMR) basal rate of metabolism (BMR). All mice had a clear circadian rhythm of Tb with minimum of 36.4±0.2 °C at 7:00 and maximum of 37.8±0.2 °C at 21:00. Their RMR measured below thermoneutrality exhibited significant daily variation, with the maximum between 16:00 and 19:00, when Tb was rising. Within thermoneutral zone (TNZ) I found between-line, but not between-time, differences in RMR. All between-line differences in RMR could be explained by the magnitude of BMR. I did not find any between-line differences of RMR value in temperatures below thermoneutrality. The amplitude of daily variation of RMR measured below TNZ depended neither on the Ta value nor on level of BMR (or visceral organs).  相似文献   

15.
1 Metabolic rates (Vo2), body temperature (Tb), and thermal conductance (C) were first determined in newly captured Maximowiczi's voles (Microtus maximowiczii) and Djungarian hamsters (Phodopus campbelli) from the Inner Mongolian grasslands at a temperature range from 5 to 35 °C.

2 The thermal neutral zone (TNZ) was between 25 and 32.5 °C for Maximowiczi's voles and between 25 and 30 °C for Djungarian hamsters. Mean Tb was 37.0±0.1 °C for voles and 36.2±0.1 °C for hamsters. Minimum thermal conductance was 0.172±0.004 ml O2/g h °C for voles and 0.148±0.003 ml O2/g h °C for hamsters.

3 The mean resting metabolic rate within TNZ was 2.21±0.05 ml O2/g h in voles and 2.01±0.07 ml O2/g h in hamsters. Nonshivering thermogenesis was 5.36±0.30 ml O2/g h for voles and 6.30±0.18 ml O2/g h for hamsters.

4 All these thermal physiological properties are adaptive for each species and are shaped by both macroenvironmental and microenvironmental conditions, food habits, phylogeny and other factors.

Keywords: Basal metabolic rate; Body temperature; Djungarian hamster (Phodopus campbelli); Maximowiczi's vole (Microtus maximowiczii); Nonshivering thermogenesis; Minimum thermal conductance  相似文献   


16.

1. 1.Thermal parameter of the four Gerbillurus species measured in the laboratory were examined in relation to their micro-environments in a xeric habitat.

2. 2.Basal metabolic rates (BMR) were lower than predicted, while thermoneutral zonds (TNZ) were narrow and exceeded burrow temperatures.

3. 3.Body temperatures (Tb) were regulated over a range of ambient temperatures (Ta). Evaporative water loss was used as a short-term cooling mechanism to reduce hyperthermia above the TNZ.

4. 4.Conductance was low below the TNZ to reduce heat loss.

5. 5.Adaptation to low temperatures is important for gerbils when active at night.

6. 6.The adaptive significance of the thermal biology of Gerbillurus is discussed in relation to phylogeny, distribution, food availability and nocturnal activity.

Author Keywords: Gerbillurus; thermal preferences; temperature regulation; oxygen consumption; conductance; evaporative water loss; behavioural avoidance  相似文献   


17.
为探讨横断山区大绒鼠适应食物匮乏的适应对策,将成年雄性大绒鼠随机分为自由取食组和饲喂正常摄食量的80% 限食组。测定了自由取食组和限食组雄性大绒鼠的体重、静止代谢率、非颤抖性产热以及体脂含量、血清瘦素含量、肝脏鲜重、褐色脂肪组织重量和消化道形态。结果显示:限食使雄性大绒鼠的体重、体脂含量、静止代谢率、非颤抖性产热、褐色脂肪组织重量和大肠、小肠长度显著降低,使盲肠内容物重量显著增加。血清瘦素含量与体重、体脂含量呈极显著正相关。在限食条件下,大绒鼠主要通过降低体重、基础代谢和产热的能量支出以及动用体内脂肪以应对食物资源短缺的环境条件,瘦素可能参与了能量代谢和体重的适应性调节。  相似文献   

18.
Many small mammals inhabiting fluctuating and cold environments display enhanced capacity for seasonal changes in nonshivering thermogenesis (NST) and thermoregulatory maximum metabolic rate (MMR). However, it is not known how this plasticity remains in a mammal that rarely experiences extreme thermal fluctuations. In order to answer this question, we determined body mass (m(b)), basal metabolic rate (BMR), NST, MMR, and minimum thermal conductance (C) on a Chilean fossorial caviomorph (Spalacopus cyanus) from a coastal population, acclimated to cold (15 degrees C) and warm (30 degrees C) conditions. NST was measured as the maximum response of metabolic rate (NST(max)) after injection of norepinephrine (NE) in thermoneutrality minus BMR. Maximum metabolic rate was assessed in animals exposed to enhanced heat-loss atmosphere (He-O2) connected with an open-flow respirometer. Body mass and metabolic variables increased significantly after cold acclimation with respect to warm acclimation but to a low extent (BMR, 26%; NST, 10%; and MMR, 12%). However, aerobic scope (MMR/BMR), calculated shivering thermogenesis (ST), and C did not change with acclimation regime. Our data suggest that physiological plasticity of S. cyanus is relatively low, which is in accordance with a fossorial mode of life. Although little is known about MMR and NST in fossorial mammals, S. cyanus has remarkably high NST; low MMR; and surprisingly, a nil capacity of ST when compared with other rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号