首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
2.
3.
4.
5.
In mammals, the pituitary POU homeodomain protein, Pit-1, binds to proximal and distal 5'-flanking sequences of the PRL gene that dictate tissue-specific expression. These DNA sequences are highly conserved among mammals but are dramatically different from PRL 5' sequences in the teleost species, Oncorhynchus tschawytscha (chinook salmon). To analyze the molecular basis for pituitary-specific gene expression in a distantly related vertebrate, we transfected CAT reporter gene constructs containing 2.4 kilobases (kb) 5'-flanking sequence from the salmon PRL (sPRL) gene into various cell types. Expression of the sPRL gene was restricted to pituitary cells, but in rat pituitary GH4 cells levels of expression were at least 90-fold lower than those obtained with a -3 kb rat PRL (rPRL) construct. Conversely, in primary teleost pituitary cells, -2.4 kb sPRL/CAT was expressed at levels about 10-fold higher than -3 kb rPRL/CAT. To determine whether species-specific transactivation by Pit-1 was sufficient to explain these species differences in PRL gene expression, we isolated a cDNA clone encoding the salmon Pit-1 POU domain and constructed a rat Pit-1 expression vector that contained salmon Pit-1 POU domain sequences substituted in frame. The chimeric Pit-1 encoded 14 amino acids unique to salmon. Coexpression of rat Pit-1 with salmon or rat PRL/CAT in transfected HeLa cells resulted in specific and strikingly comparable levels of promoter activation. Moreover, the specificity and efficacy of the chimeric salmon/rat Pit-1 was similar to wild type rat Pit-1 in activating salmon and rat PRL/CAT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
A region located remotely upstream of the human pituitary GH (GH-N) gene and required for efficient GH-N gene expression in the pituitary of transgenic mice was cloned as a 1.6-kb Bg/II (1.6G) fragment. The 1.6G fragment in the forward or reverse orientation increased -496GH-N promoter activity significantly in pituitary GC and GH3 cells after gene transfer. The 1.6G fragment was also able to stimulate activity from a minimal thymidine kinase (TK) promoter which, unlike -496GH-N, lacked any Pit-1/GHF-1 element. Enhancer activity was localized by deletion analysis to a 203-bp region in the 3'-end of the 1.6G fragment and was characterized by the presence of a diffuse 136-bp nuclease-protected site, observed with pituitary (GC) but not nonpituitary (HeLa) cell nuclear protein. A major low-mobility complex was observed by electrophoretic mobility shift assay (EMSA) with GC cell nuclear protein, and the pattern was distinct from that seen with a HeLa cell extract. The nuclease-protected region contains three A/T-rich Pit-1/ GHF-1-like elements, and their disruption, in the context of the 203-bp region fused to the TK promoter, reduced enhancer activity significantly in pituitary cells in culture. A mutation in this region was also shown to decrease enhancer activity in transgenic mice and correlated with a decrease in the 203-bp enhancer region complex observed by EMSA. The participation of Pit-1/GHF-1 in this complex is indicated by competition studies with Pit-1/GHF-1 elements and antibodies, and direct binding of Pit-1/GHF-1 to the A/T-rich sequences was shown by EMSA using recombinant protein. These studies link the A/T-rich sequences to the distal enhancer activity associated with the GH locus control region in vitro and in vivo.  相似文献   

9.
Structure of the chicken growth hormone-encoding gene and its promoter region.   总被引:12,自引:0,他引:12  
M Tanaka  Y Hosokawa  M Watahiki  K Nakashima 《Gene》1992,112(2):235-239
  相似文献   

10.
11.
12.
13.
14.
K Watanabe  M Nomoto  S Nagata  Y Itoh  K Hikichi  N Maruyama  T Mita  T Senshu 《Gene》1992,114(2):261-265
Genomic clones of the rat peptidylarginine deiminase (PAD)-encoding gene (PAD) were isolated, and the gene organization was analyzed by restriction mapping and nucleotide sequencing. The PAD spans more than 50 kb and contains 16 exons and 15 introns. The lengths of the introns from 0.5 kb to more than 16.5 kb. A 1.7-kb sequence in the 5'-flanking region was determined. S1 nuclease mapping revealed two putative cap sites 79 and 81 bp upstream from the N-terminal ATG codon of PAD, which had been determined by amino acid sequence analysis. This ATG was confirmed to be the translation start site, since no other ATG codon was found in the open reading frame downstream from the cap sites. The 5'-flanking sequence contains four potential SP1-binding sites, a putative Pit-1/GHF-1-binding site, four short sequences either identical or homologous to the sequences in the promoter regions of rat or human growth hormone encoding genes, as well as a sequence similar to an estrogen-responsive element. However, neither a typical TATAA box, nor CCAAT box is present. These results provide important clues for elucidating the mechanism of female-specific and/or sex cycle-dependent gene expression.  相似文献   

15.
16.
The nucleotide sequence of the rat epsilon-chain mRNA has been determined by sequencing cloned cDNA copies of the mRNA. The established sequence covers the coding region, the 3'-non coding region and most of the 5' non-coding region. A comparison with the nucleotide sequence of the human epsilon-chain constant region reveals that C3 and C4 are the most highly conserved domains. The rat epsilon-chain contains a C-terminal decapeptide which is not present in the human counterpart.  相似文献   

17.
18.
Studies were conducted to determine whether the trans-acting protein Pit-1/GHF-1 can bind to and activate promoter elements in both the GH and PRL genes that are necessary for cell-specific expression. Four pituitary cell lines that differentially express the endogenous GH and PRL genes were examined for their ability to activate GH and PRL promoter constructs containing sequences necessary for cell-specific expression (CSEs). Plasmids containing one CSE, -96 PRL and -104 GH, were similarly expressed in each of the four cell lines. Of the plasmids containing two CSEs, -173 PRL was always activated to a greater extent than -145 GH, with this relative activation being stronger in GC and GH1 cells than in 235-1 and GH4C1 cells. Protein-DNA binding assays were used to show that the GH and PRL CSEs specifically bound two highly abundant nuclear proteins (31 and 33 kDa). The two proteins were present at similar levels in all four pituitary cell lines and were recognized by a Pit-1/GHF-1 antibody. In contrast, HeLa and Rat2 cells did not activate transfected GH or PRL plasmids and did not contain nuclear proteins that specifically bound to the GH and PRL CSEs. However, cotransfection of these cells with the expression vector RSV-Pit-1/GHF-1 resulted in the activation of -173 PRL and -145 GH (PRL greater than GH). HeLa cells transfected with RSV-Pit-1/GHF-1 also contained 31- and 33-kDa nuclear proteins that bound to the GH and PRL CSEs. These results show that Pit-1/GHF-1 is present at levels in pituitary cell lines that are sufficient to activate the minimal elements in both the GH and PRL promoters necessary for cell-specific expression of these genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号