首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Invasive trees can cause catastrophic reductions in diversity in invaded grasslands and savannas. Such reductions often appear to be particularly severe in the new biogeographic ranges of these invaders. We present results of a field study that examined the effect of slash pine (Pinus elliottii), native to the southeastern US, on savanna groundcover vegetation in the state of São Paulo in Brazil (cerrado) and in its native range in Mississippi (USA) following fire exclusion. We compared the difference in several community attributes between slash pine understories and adjacent open area in both São Paulo and Mississippi, and compared the effects of needle litter on native species in both continents. Slash pine was correlated with lower non-graminoid species richness and plant density in both São Paulo and Mississippi; however, these apparent negative effects were 4.6 and 11 times stronger in the non-native range of Brazil (for richness and density, respectively). Native graminoids were not present in invaded cerrado. Overhead slash pine canopy cover, pine density, and needle depth were 5.2, 3.7, and at 14 times higher, respectively, in Brazil than in Mississippi savannas, for similarly-aged pine stands. One year after implementing needle litter treatments in Brazilian cerrado and restored Mississippi savanna, plant density and non-graminoid species richness were highly suppressed, but to similar degrees in both ranges. Our results suggest that higher rates of needle deposition, associated with higher tree densities, contribute to the stronger suppression of native species in Brazil than in Mississippi.  相似文献   

2.
The removal of invasive species is common in restoration projects, yet the long‐term effects of pest management programs are seldom assessed. We present results of a long‐term program to remove the invasive species Lupinus arboreus (lupin) from sand dunes in New Zealand. We evaluate the response of plant communities to lupin removal, by comparing total plant cover, the cover of non‐native and native plant species, and species richness between sand dune sites where lupin removal has occurred, not occurred, and where lupin has never been present. Neither lupin presence nor removal had a significant impact on the foredune environment. Following removal, total and other non‐native plant cover remained higher, and the cover of several native sand dune species remained lower compared with uninvaded sites in the deflation and backdune environments. These changes can be attributed to persistent effects associated with the invasion of lupin, but have also developed in response to lupin removal. The results of this study have implications for restoration projects in sand dunes. Pest management alone is unlikely to be sufficient to restore plant communities. Given the difficulties in restoring plant communities once an invasive species has established, managers should prioritize actions to prevent the spread of invasive species into uninvaded areas of sand dunes. Finally, the response to lupin invasion and removal differed between dune habitats. This highlights the importance of tailoring a pest management program to restoration goals by, for example, prioritizing areas in which the impacts of the invading species are greatest.  相似文献   

3.
The understory of exotic tree plantations can have non‐negligible native species richness. Ecological restoration of these sites may include the harvest of trees, depending on the tradeoff between timber income and harvest impacts on biodiversity. This study aimed to investigate how a site can recover from harvest disturbance, by comparing the regeneration of woody species in the understory of two types of 37‐year‐old Pinus taeda plantation (P1 and P2, high and low relative density of pine seedlings in the understory, respectively), with stands that were similar to P2 but subjected to harvest and then abandoned for 15 years (R sites). Secondary forests (SF) were used as references. We sampled three different sites for each stand condition; soil chemical properties, estimations of litter mass, and canopy cover were measured. P1 had low species diversity, and P2 and R had 50 and 46% of SF richness, respectively. The R site contained few pine saplings and was floristically similar to P2; this indicated that 15 years was sufficient for the recovery of plant diversity to near pre‐harvesting levels. Soil fertility was highest in SF and lowest in P1. Thus old plantations of P. taeda with low relative density of pine juveniles can be cost‐effective starting points for restoration. Despite the destructive effects of pine harvest, recovery of native species can occur rapidly. In situations in which clearcutting of pine stands is not planned or possible, modest thinning of P. taeda adults and/or intensive thinning of juveniles could expedite restoration.  相似文献   

4.
Mallín wetland meadows are highly diverse, rare habitats in western Patagonia that are believed to be particularly susceptible to disturbance. I tested the hypothesis that exotic species reduce the rate and extent of recolonization by native species after disturbances. Open patches (50 × 50 cm) were subjected to artificial seeding with propagules of two exotic species. Cover of individual species in each plot was measured over the four following austral summers (1990–1993) and two late summers (1995 and 1998). The effect of a particular exotic species was not the same for all native species. For some native species, the presence of an exotic species in the plots was associated with a significant increase in cover, while a significant decrease in cover was observed for other species. Native species richness and diversity were not significantly affected by the introduction and establishment of exotic species. In addition, the failure of the exotic species to establish in the undisturbed control plots further suggests that the undisturbed mallín is resistant to invasion by exotic species. The results suggest that the small-scale changes that occurred in this community due to exotic species during recolonization were transient and almost undetectable after eight years.  相似文献   

5.
In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m−2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone.  相似文献   

6.
Abstract The extent of grazing by two macropodids, the agile wallaby (Macropus agilis) and the swamp wallaby (Wallabia bicolor) on coastal foredunes on South Stradbroke Island in southeast Queensland was investigated to determine potential impacts on the principal sand colonizing species, sand spinifex grass (Spinifex sericeus). Grazing on spinifex grass on the foredunes of South Stradbroke island can be attributed principally to agile wallabies. Foraging activity by wallabies was higher in areas of high spinifex abundance, however, grazing intensity and impact on spinifex was only important on foredunes with low spinifex abundance. Spinifex consumption by wallabies was also related to a number of factors, especially composition and structure of vegetation in adjacent habitats. Spinifex consumption increased when the abundance of ground cover components (grasses, sedges, forbs) in adjacent habitats was low and structural complexity was high. Grazing on foredunes by wallabies significantly affects the species composition of the foredune community by excluding the establishment of a number of perennial foredune plant species. This may have implications for community succession in coastal ecosystems.  相似文献   

7.
Across much of the southeastern U.S.A., sandhills have become dominated by hardwoods or invasive pine species following logging of Pinus palustris (longleaf pine) and fire suppression. At Eglin Air Force Base where this study was conducted, Pinus clausa (sand pine) has densely colonized most southeastern sandhill sites, suppressing groundcover vegetation. The objectives of this study were: to determine if suppressed groundcover vegetation recovers following the removal of P. clausa; to compare species composition and abundance in removal plots with that in reference, high quality sandhills; to test the assumption that recolonization by P. clausa seedlings decreases with proximity to the centers of removal plots; and to measure the survival of containerized P. palustris seedlings that were planted on P. clausa removal plots. One year post‐removal (1995), the number of plant species decreased by 50%, but then increased by 100% from 1995 to 1997, followed by a small reduction in 1998. The number of plant species was greater in reference plots than in removal plots prior to 1997. Eighty‐five percent of the original species were recorded 4 years post‐harvest in removal plots. Shrubs and large trees remained at low density after harvest. Densities of graminoids, legumes, other forbs, woody vines, and small trees increased after harvest. Plant densities of all life forms, except woody vines, were greater in reference plots than in removal plots. The density of recolonizing P. clausa seedlings 2–4 years post‐harvest significantly decreased with increasing proximity to the centers of removal plots. On average, 80% of planted P. palustris seedlings survived their first 2 years. Harvest of P. clausa followed by fire and the planting of P. palustris is a reasonably effective restoration approach in invaded sandhills. However, supplementary plantings of some herbaceous species may be necessary for full restoration.  相似文献   

8.
The removal of invasive species is often one of the first steps in restoring degraded habitats. However, studies evaluating effectiveness of invasive species removal are often limited in spatial and temporal scale, and lack evaluation of both aboveground and belowground effects on diversity and key processes. In this study, we present results of a large 3‐year removal effort of the invasive species, Gypsophila paniculata, on sand dunes in northwest Michigan (USA). We measured G. paniculata abundance, plant species richness, plant community diversity, non‐native plant cover, abundance of Cirsium pitcheri (a federally threatened species endemic to this habitat), sand movement, arbuscular mycorrhizal spore abundance, and soil nutrients in fifteen 1000 m2 plots yearly from 2007 to 2010 in order to evaluate the effectiveness of manual removal of this species on dune restoration. Gypsophila paniculata cover was greatly reduced by management, but was not entirely eliminated from the area. Removal of G. paniculata shifted plant community composition to more closely resemble target reference plant communities but had no effect on total plant diversity, C. pitcheri abundance, or other non‐native plant cover. Soil properties were generally unaffected by G. paniculata invasion or removal. The outlook is good for this restoration, as other non‐native species do not appear to be staging a “secondary” invasion of this habitat. However, the successional nature of sand dunes means that they are already highly invasible, stressing the need for regular monitoring to ensure that restoration progresses.  相似文献   

9.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

10.
Reed canary grass (Phalaris arundinacea) invades wetlands, forms monotypes, and resists control efforts, suggesting that strong feedbacks sustain its dominance, as in the alternative states model. In nine field experiments, we tested the hypothesis that applying a graminicide (sethoxydim) for three years would progressively reduce Phalaris abundance, and that seeding sedge meadow species (except grasses) would reestablish native plant dominance. The graminicide prevented Phalaris from flowering, reduced its height by 50% and reduced its cover, often to less than 40%. However, only two of the nine sites showed progressive declines over the three‐year experiment. The first setback was that Phalaris recovered annually in nearly all treatment plots. A second setback was that seeding did not reestablish sedge meadow. In five sites, unseeded plots had similar numbers of native species as those seeded with either forbs, forbs and graminoids, or graminoids. In four formerly agricultural sites, however, non‐native weeds increased in species richness and cover (a third setback). In only one site did the graminicide's effect on Phalaris allow native species to increase in number and cover. But short‐term gains were not long‐lasting. In year four, three sites that developed high native‐species cover were again strongly dominated by Phalaris (a fourth setback). The feedbacks that sustain this invader include resistance to the graminicide aboveground and rapid and robust regrowth from rhizomes and seeds belowground. The weak effect of this graminicide was a surprise; hence, we recommend stronger management actions to control Phalaris.  相似文献   

11.
The effects of soil disturbance on the nematode community were assessed at 30 sites on the outer coastal plain of Mississippi, representing four ages since soil disturbance plus a control group of six undisturbed sites. Thirty-five taxa were encountered, dominated in abundance and taxonomic richness by plant and bacterial feeders. Nematodes were more abundant and more taxonomically rich in sites with a low slope and deep litter cover, distant from trees. Plant feeders were more numerous at sites with a dense herb cover, suggesting limitation by food availability. When sites were arranged as a chronosequence, herb cover, litter depth, soil organic matter, soil moisture, and tree canopy cover increased through time consistent with succession to forest. The abundance of most trophic groups decreased in the 10 to 20 years following disturbance and increased thereafter, a pattern repeated in taxonomic richness of plant and bacterial feeders. Fifty years after disturbance, nematode abundance had not returned to levels observed in control sites. These results suggest that nematode succession following soil disturbance is a gradual process regulated by establishment of aboveground vegetation. There was no evidence of dispersal limitation or facilitation by colonist nematode species.  相似文献   

12.
Question: Do anthropogenic disturbances interact with local environmental factors to increase the abundance and frequency of invasive species, which in turn exerts a negative effect on native biodiversity? Location: Mature Quercus‐Carya and Quercus‐Carya‐Pinus (oak‐hickory‐pine) forests in north Mississippi, USA. Methods: We used partial correlation and factor analysis to investigate relationships between native ground cover plant species richness and composition, percent cover of Lonicera japonica, and local and landscape‐level environmental variables and disturbance patterns in mature upland forests. We directly measured vegetation and environmental variables within 34 sampling subplots and quantified the amount of tree cover surrounding our plots using digital color aerial photography. Results: Simple bivariate correlations revealed that high species richness and a high proportion of herbs were associated with low Lonicera japonica cover, moist and sandy uncompacted soils, low disturbance in the surrounding landscape, and periodic prescribed burning. Partial correlations and factor analysis showed that once we accounted for the environmental factors, L japonica cover was the least important predictor of composition and among the least important predictors of species richness. Hence, much of the negative correlation between native species diversity and this invasive species was explained by soil texture and local and landscape‐level land‐use practices. Conclusions: We conclude that negative correlations between the abundance of invasive species and native plant diversity can occur in landscapes with a gradient of human disturbance, regardless of whether there is any negative effect of invasive species on native species.  相似文献   

13.
Vulnerability of natural communities to invasion by non‐native plants has been linked to factors such as recent disturbance and high resource availability, suggesting that recently restored habitats may be especially invasible. Because non‐native plants can interfere with restoration goals, monitoring programs should anticipate which sites are most susceptible to invasion and which species are likely to become problematic at a site. Restored sites of larger area and those with high rates of propagule input should have higher species richness of both natives and non‐natives, leading to a positive correlation between the two. However, in restored wetlands, urbanization, riparian landscape settings, and nitrogen enrichment likely favor non‐native relative to native species. We sampled 28 restored wetlands in Illinois, USA, modeled the responses of native richness, non‐native richness and non‐native cover to local and landscape predictors with linear regression, and modeled the presence/absence of 21 non‐native species with logistic regressions. Unexpectedly, native and non‐native richness were uncorrelated, suggesting different responses to environmental factors. Native richness declined with increasing available soil nitrogen and urbanization in the surrounding landscape. Non‐native richness, the richness of non‐natives relative to natives, and the likelihood of invasion by several individual invasive species decreased with increasing distance from the city of Chicago, likely in response to decreasing non‐native propagule pressure. Total cover of non‐natives, however, as well as cover by non‐native Phalaris arundinacea, increased with nitrogen availability. Our results indicate that although non‐native richness was better predicted by factors related to propagule pressure, non‐native species dominance was more closely related to local abiotic factors. Non‐native richness in restoration sites may be beyond the control of restoration practitioners, and furthermore, may be of limited relevance for conservation goals. In contrast, limiting the relative dominance of non‐natives should be a restoration priority and may be achievable through management of nutrient availability.  相似文献   

14.
There is an enormous body of literature on plant invasions, including many investigations of the types of introduced species that are most likely to invade natural ecosystems. In this study we turn invasion biology upside down, and ask what sort of native species colonise novel anthropogenic habitats such as roadside lawns, infrequently tended road shoulders, railway embankments and fire trails. We quantified species richness and cover in roadside lawns and infrequently tended road shoulders in five regions of New South Wales, Australia. The native vegetation in these regions included sclerophyll forest, fertile and infertile Eucalypt‐dominated woodlands, rainforest, and semi‐arid woodland. We performed a complementary survey of sites spanning five disturbance levels within the region containing sclerophyll forest vegetation. Although many non‐native species were present in disturbed, novel habitats, a total of 136 native species were also found. Most of these native species were in sites with low levels of disturbance (fire trails and railway embankments), but 35 native species were found to colonise roadside lawns, our most highly‐disturbed vegetation type. There was a significant negative relationship between the disturbance level in novel habitats and the number and cover of native species. Native species that colonised novel habitats were disproportionately likely be generalist species whose natural habitat includes both high and low light and high and low disturbance conditions. The native species colonising novel habitats also tended to have traits associated with a fast life‐history, including short stature and small seeds. A surprisingly high number of native plant species are colonising novel, anthropogenic habitats. Our findings highlight the potential importance of urban ecosystems for conservation and restoration biology.  相似文献   

15.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

16.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Invasive species that increase prevailing disturbance regimes can profoundly alter the composition and structure of ecosystems they invade. Using both comparative and manipulative approaches, we investigated how native and exotic vegetation and soil characteristics at a coastal grassland site in northern California changed through time following disturbances by feral pigs (Sus scrofa). We quantified these successional changes by comparing pig disturbances of varying ages (2, 14, 26+, and 60+ months) during the spring and early summer of 2001. Our results indicate that species richness of native plants increased slowly but steadily through time following disturbances, whereas richness of exotic species rebounded much more rapidly. Percent cover of native perennial grasses also increased steadily through time after pig disturbance, whereas the cover of exotic perennial grasses, annual grasses and forbs initially increased rapidly after disturbance and then remained the same or subsided slightly with time. The cover of native forbs and bulbs either increased weakly through time following disturbance or did not change substantially. Pools of ammonium and nitrate in the soil did not change greatly through time following pig disturbance. Net mineralization rates for ammonium and nitrate also varied little with age since disturbance, although we did find that nitrate mineralization was greater at intermediate ages in one study. Neither organic matter content or particle size varied significantly with disturbance age. In summary, we have shown that native and exotic plants from different functional groups vary greatly in how they recovered from pig disturbances. Exotic taxa were generally able to rapidly colonize and persist in pig disturbances, whereas native taxa usually exhibited a slow but steady rebounding following pig disturbance. Given our results, and those of others from nearby sites, we suggest that the health of coastal grasslands may be enhanced substantially by eliminating or greatly reducing the size of feral pig populations.  相似文献   

18.
We tested if subalpine heath vegetation in northern Italy recovered after experimental perturbation of soil nutrient availability (fertilization) and species composition (removal of co-dominant dwarf shrubs). Species cover was assessed non-destructively before the start of the treatments (1995), at the end of the treatments (1999) and 4 years after the treatments ended (2003). Shrub removal had rather modest effects on heath vegetation, except for mosses which decreased significantly in removal plots. Fertilization decreased the cover of shrubs, mosses, and some graminoids but increased the cover of Festuca rubra. Fertilization converted heath to grassland, but the response of graminoid species was individualistic. Fertilization decreased vascular species richness and evenness, probably through negative effects of shading and litter accumulation on plant growth or recruitment. The vegetation had not recovered completely 4 years after the perturbations had stopped. This suggests that, in contrast to rapid responses to species removal and fertilization, recovery from these perturbations was rather slow, presumably because recovery was affected by long-term biotic interactions and species controls on ecosystem properties.  相似文献   

19.
Disturbances like hurricanes can affect diversity and community composition, which may in turn affect ecosystem function. We examined how a simulated hurricane disturbance affected insect communities inhabiting the phytotelma (plant-held waters) of Heliconia caribaea in the Luquillo Experimental Forest of eastern Puerto Rico, a tropical island that frequently experiences hurricanes. We hypothesized that disturbance would alter diversity and that larger Heliconia would attract more species following disturbance due to the area-diversity relationship described by the Theory of Island Biogeography. Individual flower parts (bracts) of Heliconia inflorescences (racemes) were artificially disturbed via removal of existing insect communities, then after refilling with water, cohorts of Heliconia were destructively sampled biweekly for 6 weeks to assess recolonization patterns of α (bract level), β, and γ (summed across bracts; raceme level) diversity over time and across raceme sizes. Although we found no support for our hypothesis about the effect of raceme size on recolonization, our hypothesis regarding recolonization patterns over time was supported; species richness, evenness, and abundance of bracts increased directly after the disturbance and then decreased below pre-disturbance levels, and community composition at the raceme level changed significantly over time during recolonization. β Diversity was also greater in smaller racemes compared to larger racemes, suggesting high heterogeneity across bracts of Heliconia racemes exacerbated by raceme size and age. Overall, our results highlight the importance of scale and appropriate measurements of diversity (particularly α) in experiments aiming to extrapolate conclusions about the ecological impacts of disturbances across different habitats and ecosystems.  相似文献   

20.
South African fynbos vegetation is threatened on a large scale by invasive woody plants. A major task facing nature conservation managers is to restore invaded areas. The aim of this study was to determine the restoration potential of fynbos following dense invasion by the Australian tree Acacia saligna. The impacts of dense invasion on seed‐bank composition and depth distribution were investigated to determine which fynbos guilds and species have the most persistent seed‐banks. Soil samples were excavated at three different depths for invaded and uninvaded vegetation at two sand plain and mountain fynbos sites. Seed‐banks were determined using the seedling emergence approach. Invasion caused a significant reduction in seed‐bank density and richness at all sites. There was a significant, but smaller, reduction in seed‐bank density and richness with soil depth at three sites. Seed‐bank composition and guild structure changed following invasion. Low persistence of long‐lived obligate seeders in sand plain fynbos seed‐banks indicates that this vegetation type will be difficult to restore from the seed‐bank alone following alien clearance. The dominance of short‐lived species, especially graminoids, forbs and ephemeral geophytes, suggests that regenerating vegetation will develop into a herbland rather than a shrubland. It is recommended that seed collecting and sowing form part of the restoration plan for densely invaded sand plain sites. As seed density remained higher towards the soil surface following invasion, there is no general advantage in applying a mechanical soil disturbance treatment. However, if the shallow soil seed‐bank becomes depleted, for example following a hot fire through dense alien slash, a soil disturbance treatment should be given to exhume the deeper viable seed‐bank and promote recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号