首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)‐limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient‐poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N‐uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the Rirregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non‐mycorrhizal plants across the entire range of nutrient supplies.  相似文献   

2.
Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolataGlomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi. margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.  相似文献   

3.
Effects have been investigated of reduced C supply (induced by shade) on arbuscular mycorrhizal (AM) colonisation, mycorrhizal growth responses (MGRs) and on AM-mediated and direct uptake of phosphate (Pi) (using 32P) in wheat, a plant that does not usually respond positively to AM colonisation. Shading markedly reduced growth and shoot/root dry weight ratios of both AM and non-mycorrhizal wheat, indicating decreased photosynthetic C supply. However, shading had very little effect on percent root length colonised by Rhizophagus irregularis or Gigaspora margarita or on MGRs, which remained slightly positive or zero, regardless of shade; there were no growth depressions under shade. By 6 weeks, when the contributions of the AM pathway were measured with 32P supplied in small hyphal compartments, R. irregularis had supplied 23 to 28 % of shoot P with no significant effect of shading. Data show that reduced C availability did not reduce the contribution of the AM pathway to plant P, so the fungi were not acting physiologically as parasites. These results support our previous hypothesis that lack of positive MGR is not necessarily the outcome of excessive C use by the fungi or failure to deliver P via the AM pathway.  相似文献   

4.
This study sheds light on a poorly understood area in insect-plant-microbe interactions,focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal(AM)fungus root colonization.It investigates a commonly occurring interaction of three species:pea aphid Acyrthosiphon pisum,barrel medic Medicago truncatula,and the AM fungus Rhizophagus irregularis,examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization(42% and 84% root length colonized).Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph(EPG)technique,also,foliar nutrient content and plant growth were measured.Summarizing,aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls.Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants.Shoots of the 84% AM plants had higher percent carbon(43.7%)relative to controls(40.5%),and the 84% AM plants had reduced percent nitrogen(5.3%)relative to the 42% AM plants(6%).In conclusion,EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy(e.g.,thicker leaves),and poor food quality(reduced nitrogen)in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion.This work suggests that M.truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.  相似文献   

5.
Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber–R. irregularis symbioses and non‐mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build‐up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants.  相似文献   

6.
Soybean plants can form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal (AM) fungi, but little is known about effects of co-inoculation with rhizobia and AM fungi on plant growth, or their relationships to root architecture as well as nitrogen (N) and phosphorus (P) availability. In the present study, two soybean genotypes contrasting in root architecture were grown in a field experiment to evaluate relationships among soybean root architecture, AMF colonization, and nodulation under natural conditions. Additionally, a soil pot experiment in greenhouse was conducted to investigate the effects of co-inoculation with rhizobia and AM fungi on soybean growth, and uptake of N and P. Our results indicated that there was a complementary relationship between root architecture and AMF colonization in the field. The deep root soybean genotype had greater AMF colonization at low P, but better nodulation with high P supply than the shallow root genotype. A synergistic relationship dependent on N and P status exists between rhizobia and AM fungi on soybean growth. Co-inoculation with rhizobia and AM fungi significantly increased soybean growth under low P and/or low N conditions as indicated by increased shoot dry weight, along with plant N and P content. There were no significant effects of inoculation under adequate N and P conditions. Furthermore, the effects of co-inoculation were related to root architecture. The deep root genotype, HN112, benefited more from co-inoculation than the shallow root genotype, HN89. Our results elucidate new insights into the relationship between rhizobia, AM fungi, and plant growth under limitation of multiple nutrients, and thereby provides a theoretical basis for application of co-inoculation in field-grown soybean.  相似文献   

7.
Abstract

Interactions between three genotypes (Ljsym 71-1, Ljsym 71-2 and Ljsym 72) of Lotus japoicus and one isolate from each of four species of arbuscular mycorrhizal fungi (Glomus sp. R-10, Glomus intraradices, Glomus etunicatum, and Gigaspora margarita) were investigated and compared with the wild-type ‘Gifu’ B-129. All the three genotypes showed no or defective internal colonization after inoculation with these AM fungi. In Ljsym72 mutant, the AM fungi produced deformed appressoria on the root surface, but failed to form any internal structures (internal hyphae, arbuscules and vesicles) except only in Glomus intraradices. The Ljsym71-1 and Ljsym71-2 mutants had more deformed appressoria and occasionally formed internal hyphae, arbuscules and vesicles, depending on AM fungi used. Wild-type ‘Gifu’ (nod+myc+) plants had typical colonization. The colonization of mutants by several fungi varied and provides a basis for studying recognition and compatibility between plants and mycorrhizal fungal species. These mutants also will be useful in studies of the genetics of the symbiosis between plant species and AM fungi.  相似文献   

8.
The effects of some selected arbuscular mycorrhizal (AM) fungi, Gigaspora margarita and Glomus mossae on the growth and the role of soluble amino acids of two contrasting cocoa cultivars (ICS84 tolerant and SNK10 sensitive) against black pod disease caused by Phytophthora megakarya were investigated. Root colonization by AM fungi is between 50 and 70% 18 weeks after planting. Tested AM fungi significantly increased all the plant growth parameters (height, number of leaves, shoot and root matter) and P uptake as compared to non‐inoculated plants in pot experiments. AM fungi inoculated cocoa reduced the disease severity. Compared to the control, the soluble amino acid levels increased with inoculation of the AM fungi strains in the necrotic stems of disease on inoculated cocoa plants. Significant relationships between amino acids and disease severity observed for two cocoa cultivars imply that the induction of specific amino acids synthesized by leaves, such as arginine, cysteine and glutamic acid, may represent potential candidate molecules for adaptation of such cultivars to P. megakarya disease. Inoculating seedlings with AMF in nurseries could enhance the development of cocoa plants protected against P. megakarya.  相似文献   

9.
We evaluated the roles of arbuscular mycorrhizal (AM) fungi in growth and phosphorus (P) nutrition of wheat (Triticum aestivum L.) in a highly calcareous soil and compared the responses of wheat with those of clover (Trifolium subterraneum L). In the first experiment wheat (cv. Brookton) was harvested at 6 wk. Colonisation by four AM fungi was low (<20%). Clover was harvested at 8 wk. Colonisation varied with different fungi, with the highest value (52%) obtained with Glomus intraradices. Although suffering from P deficiency, non-mycorrhizal (NM) wheat grew relatively well with no added P (P0) and application of P at 100 mg kg−1 (P100) increased the dry weight (DW). Shoot P concentrations increased with P application and there were positive effects of all AM fungi at P100. In contrast, NM clover grew very poorly at P0 and did not respond to P application. Clover responded positively to all AM fungi at both P levels, associated with increases in P uptake. In the second experiment colonisation by a single AM fungus (G. intraradices) of two wheat cultivars (Brookton and Krichauff) was well established at 6 wk (~50% in P0 plants) and continued to increase up to maturity (~70%), but decreased greatly at both harvests as P supply was increased (up to 150 mg P kg−1: P150). Addition of P significantly increased plant growth, grain yield and P uptake irrespective of cultivar and harvest time, and the optimum soil P for grain yield was P100. In both cultivars, a growth depression in AM plants occurred at 6 wk at all P levels, but disappeared at 19 wk with added P. At P0, AM plants also produced lower grain yield (weight) per plant, but with higher P, AM plants produced higher grain yields than NM plants. There was a significant positive effect of AM on grain P concentration at P0, but not at other P levels. Brookton was somewhat more P efficient than Krichauff, and the latter responded more to AM fungi. This study showed that responses of wheat to AM inoculation and P supply were quite different from those of clover, and changed during development. Results are discussed in relation to the underlying soil properties.  相似文献   

10.
The sucrose transporter SUT1 functions in phloem loading of photoassimilates in solanaceous plant species. In the present study, wildtype and transgenic potato plants with either constitutive overexpression or antisense inhibition of SUT1 were grown under high or low phosphorus (P) fertilization levels in the presence or absence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices. At a low soil P fertilization level, the extent of AM fungal root colonization was not different among the genotypes. In all plants, the AM symbiosis contributed significantly to P uptake under these conditions. In response to a high soil P fertilization level, all genotypes showed a decrease in AM fungal root colonization, indicating that the expression level of SUT1 does not constitute a major mechanism of control over AM development in response to the soil P availability. However, plants with overexpression of SUT1 showed a higher extent of AM fungal root colonization compared with the other genotypes when the soil P availability was high. Whether an increased symbiotic C supply, alterations in the phytohormonal balance, or a decreased synthesis of antimicrobial compounds was the major cause for this effect requires further investigation. In plants with impaired phloem loading, a low C status of plant sink tissues did apparently not negatively affect plant C supply to the AM symbiosis. It is possible that, at least during vegetative and early generative growth, source rather than sink tissues exert control over amounts of C supplied to AM fungi.  相似文献   

11.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

12.
Drought is a world-spread problem seriously influencing crop production. Arbuscular mycorrhizal (AM) association and soil microorganisms can help plant growth under water stress condition by improvement of its nutrient and water uptake. In this experiment, onion plants (Allium cepa L. cv. Red Azar Shahr) were inoculated with three AM fungi species (Glomus versiforme, G. intraradices, G. etunicatum) or left un-inoculated as non-mycorrhizal plants, in a sterile or non-sterile sandy loam soil. Plants were irrigated at 7, 9 or 11-day intervals to keep the soil moisture content to field capacity at the irrigation time. Mycorrhizal root colonization decreased (p < 0.05) with an increase in irrigation interval, and the highest root colonization was achieved at 7-day irrigated onions in symbiosis with G. versiforme. Phosphorus content in plant tissue was significantly increased in mycorrhizal than non-mycorrhizal onions. Plants inoculated with G. versiforme at 9-day interval treatment had the highest leaf P content, while the lowest P was observed in non-mycorrhizal plants at all irrigation intervals. Onions inoculated by G. versiforme or G. etunicatum at 9-day irrigation interval had the highest K content. Results revealed that the inoculation of onion plant with G. versiforme or G. etunicatum and increasing irrigation interval up to 9 days, could improve P and K uptake.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) improve functioning of legume-Rhizobium symbiosis under salinity. However, plant responses to mycorrhization vary depending on the plant and fungal species. The current study aimed to compare the effectiveness of a native inoculum from saline soil and two exotic isolates, Funneliformis mosseae and Rhizophagus irregularis on two Cajanus cajan (pigeonpea) genotypes (Paras, Pusa 2002) subjected to NaCl stress. Salinity depleted nodulation and nutrient status in both genotypes with higher negative effects in Paras. Although all AM fungi improved growth, R. irregularis performed better by promoting higher biomass accumulation, nodulation, N2 fixation and N, P uptake which correlated with higher AM colonization. R. irregularis inoculated plants also accumulated higher trehalose in nodules due to decreased trehalase and increased trehalose-6-P synthase, trehalose-6-phosphatase activities. The results suggest that higher stability of R. irregularis-pigeonpea symbiosis under salt stress makes it an effective ameliorator for overcoming salt stress in pigeonpea.  相似文献   

14.
Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing (33P and 13C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses.  相似文献   

15.
Chen BD  Liu Y  Shen H  Li XL  Christie P 《Mycorrhiza》2004,14(6):347-354
We investigated uptake of Cd by arbuscular mycorrhizal (AM) maize inoculated with Glomus mosseae from a low-P sandy calcareous soil in two glasshouse experiments. Plants grew in pots containing two compartments, one for root and hyphal growth and one for hyphal development only. Three levels of Cd (0, 25 and 100 mg kg–1) and two of P (20 and 60 mg kg–1) were applied separately to the two compartments to assess hyphal uptake of Cd. Neither Cd nor P addition inhibited root colonization by the AM fungus, but Cd depressed plant biomass. Mycorrhizal colonization, P addition and increasing added Cd level led to lower Cd partitioning to the shoots. Plant P uptake was enhanced by mycorrhizal colonization at all Cd levels studied. When Cd was added to the plant compartment and P to the hyphal compartment, plant biomass increased with AM colonization and the mycorrhizal effect was more pronounced with increasing Cd addition. When P was added to the plant compartment and Cd to the hyphal compartment, plant biomass was little affected by AM colonization, but shoot Cd uptake was increased by colonization at the low Cd addition rate (25 mg kg–1) and lowered at the higher Cd rate (100 mg kg–1) but with no difference in root Cd uptake. These effects may have been due to immobilization of Cd by the fungal mycelium or effects of the AM fungus on rhizosphere physicochemical conditions and are discussed in relation to possible phytostabilization of contaminated sites by AM plants.  相似文献   

16.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

17.
Copetta A  Lingua G  Berta G 《Mycorrhiza》2006,16(7):485-494
The essential oils of basil are widely used in the cosmetic, pharmaceutical, food, and flavoring industries. Little is known about the potential of arbuscular mycorrhizal (AM) fungi to affect their production in this aromatic plant. The effects of colonization by three AM fungi, Glomus mosseae BEG 12, Gigaspora margarita BEG 34, and Gigaspora rosea BEG 9 on shoot and root biomass, abundance of glandular hairs, and essential oil yield of Ocimum basilicum L. var. Genovese were studied. Plant P content was analyzed in the various treatments and no differences were observed. The AM fungi induced various modifications in the considered parameters, but only Gi. rosea significantly affected all of them in comparison to control plants or the other fungal treatments. It significantly increased biomass, root branching and length, and the total amount of essential oil (especially α-terpineol). Increased oil yield was associated to a significantly larger number of peltate glandular trichomes (main sites of essential oil synthesis) in the basal and central leaf zones. Furthermore, Gi. margarita and Gi. rosea increased the percentage of eugenol and reduced linalool yield. Results showed that different fungi can induce different effects in the same plant and that the essential oil yield can be modulated according to the colonizing AM fungus.  相似文献   

18.
Martin CA  Stutz JC 《Mycorrhiza》2004,14(4):241-244
Capsicum annuum (pepper) plants were inoculated with the arbuscular mycorrhizal (AM) fungi Glomus intraradices Smith and Schenck, an undescribed Glomus sp. (AZ 112) or a mixture of these isolates. Control plants were non-mycorrhizal. Plants were grown for 8 weeks at moderate (20.7–25.4°C) or high (32.1–38°C) temperatures. Colonization of pepper roots by G. intraradices or the Glomus isolate mixture was lower at high than at moderate temperatures, but colonization by Glomus AZ112 was somewhat increased at high temperatures. Pepper shoot and root dry weights and leaf P levels were affected by an interaction between temperature and AM fungal treatments. At moderate temperatures, shoot dry weights of plants colonized by the Glomus isolate mixture or non-AM plants were highest, while root dry weights were highest for non-AM plants. At high temperatures, plants colonized by Glomus AZ112 or the non-AM plants had the lowest shoot and root dry weights. AM plants had generally higher leaf P levels at moderate temperatures and lower P levels at high temperatures than non-AM plants. AM plants also had generally higher specific soil respiration than non-AM plants regardless of temperature treatment. At moderate temperatures, P uptake by all AM plants was enhanced relative to non-AM plants but there was no corresponding enhancement of growth, possibly because less carbon was invested in root growth or root respiratory costs increased. At high temperatures, pepper growth with the G. intraradices isolate and the Glomus isolate mixture was enhanced relative to non-AM controls, despite reduced levels of AM colonization and, therefore, apparently less fungal P transfer to the plant.  相似文献   

19.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

20.
Syvertsen  James P.  Graham  James H. 《Plant and Soil》1999,208(2):209-219
We hypothesized that greater photosynthate supply at elevated [CO2] could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and ‘Ridge Pineapple’ sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (A CO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A CO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased A CO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号