首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Performance of Vegetation in Reclaimed Slopes Affected by Soil Erosion   总被引:1,自引:0,他引:1  
Soil erosion in reclaimed mines may affect plant colonization and performance, and may compromise restoration success; however, the magnitude of this effect has seldom been quantified. We monitored the dynamics of vegetation (seed bank density, seedling emergence, plant mortality, and seed production) during a growing season (2003–2004) in three constructed slopes with differing past erosion rates. The slopes are located in the Utrillas coalfield in Spain, which experiences a Mediterranean‐continental climate. In the most eroded slope, soil water availability was lower—especially in the interrill areas—and seedling emergence rate, plant survival, and seed production were also significantly lower than on the less eroded slopes. We found that vegetation recovery is dramatically constrained when rill erosion rate is 17 t ha?1 yr?1 and plant cover is 30%, but this effect disappears when plant cover is higher than 60%. Soil erosion in constructed slopes appears to inhibit natural plant colonization processes by increasing runoff water loss over the long‐term. Thus, when rill erosion networks develop, human intervention would be needed to minimize the loss of water and facilitate vegetation colonization.  相似文献   

2.
Many efforts to restore disturbed landscapes seek to meet ecological goals over timescales from decades to centuries. It is thus crucial to know how different actions available to restoration practitioners may affect ecosystems in the long term, yet few such data exist. Here, we test the effects of seed and compost applications on plant community composition 9 years after their application, by taking advantage of a well‐controlled restoration experiment on a mountainside severely degraded by over 80 years of zinc smelting emissions. We asked whether plots have converged on similar plant communities regardless of initial seed and compost treatments, or if these initial treatments have given rise to lasting differences in whole plant communities or in the richness and abundance of native, exotic, and planted species. We found that compost types significantly affected plant communities 9 years later, but seed mix species composition did not. Observed differences in species richness and vegetative cover were negatively correlated, and both were related to the differences in plant communities associated with different compost types. These observed differences are due primarily to the number and abundance of species not in original seed mixes, of which notably many are native. Our results underscore the importance of soils in shaping the aboveground composition of ecosystems. Differences in soil characteristics can affect plant diversity and cover, which are both common restoration targets. Even in highly polluted and devegetated sites, compost and seed application can reinstate high vegetative cover and allow continued colonization of native species.  相似文献   

3.
The effects of sewage sludge, used to improve fertility of replaced soil, on vegetation were studied in limestone quarry restoration. Plant community growing in the first stages after sludge application was surveyed in six quarries of NE Spain. Areas with a mixture of sewage sludge and residual soil were compared to areas where the application consisted only of residual soil (a mixture of previous top soil and mine spoils). Sewage sludge was hypothesized to increase total biomass and cover, modifying species composition and delaying the early successional recover of the community. The results showed that both biomass and plant cover increased because of sewage sludge addition. The floristic composition was dominated by ruderal species that did not show any dependence on sewage sludge application. Convergence on similarity between sludge and control plots was not detected along a 5‐year period. Although species richness was significantly lower in sludge plots, diversity and equitability indexes did not show differences between treatments. The results did not show differences in the proportion of non‐native species. The proportion of legumes was lower in sludge plots. These results show that the plant communities resulting from the addition of sewage sludge to the soil used in limestone quarry restoration have more biomass and cover, but less number of species, and they do not show a clear trend to converge to those areas restored only with non‐amended soil.  相似文献   

4.
Phylogenetic and functional diversity are relevant for restoration planning, as they influence important ecosystem functions and services. However, it is unknown whether initial phylogenetic and functional diversity of restorations as planned and planted are maintained over time, that is, the extent to which diversity of the restoration planting is reflected in the diversity of the resulting plant community. Furthermore, in the tallgrass prairie, many restorations are planted from seed. Among-species variation in emergence and establishment affects the transition from seed mixes to realized plant communities in these restorations. We evaluated emergence and early establishment of experimental communities in a biodiversity plot experiment designed to test how phylogenetic and functional diversity influence restoration outcomes. We planted the same experimental communities starting from both seeds and plugs to assess differences in establishment. Our results suggest that phylogenetically and functionally diverse species mixes tend to produce phylogenetically and functionally diverse restored plant communities. After 3 years, experimental communities generally maintained their phylogenetic and functional diversity from seed and plug mixes to established vegetation, despite declines in species richness. While plots planted from seeds had on average 1.3 fewer species than plots planted from plugs, phylogenetic and functional diversity did not significantly differ between the two. Furthermore, most species exhibited no significant differences in percent cover when planted from seeds or plugs. Seeds are generally more cost-effective for restoration than plugs, and our results indicate these two establishment methods achieved similar biodiversity outcomes.  相似文献   

5.
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix.  相似文献   

6.
The use of Technosols for the restoration of limestone quarries overcomes the usual “in situ” scarcity of soil and/or its poor quality. The use of mine spoils, improved with mineral and/or organic amendments, could be an efficient and environmentally friendly option. Properly treated sewage sludge from urban wastewater treatment plants could be a suitable organic amendment and fertilizer (rich in N and P) whenever its pollutant burden is low (heavy metals and/or organic pollutants). Its appropriate use could improve essential soil physical and chemical properties and, therefore, promote key ecosystem services of restored areas, such as biomass production and carbon sequestration, as well as biodiversity and landscape recovery. However, the mid‐term impacts of these restoration practices on soil functioning and their services have rarely been reported in the available literature. In this study we assess the mid‐term effects (10 years) of the use of sewage sludge as a Technosol amendment on soil organic carbon (SOC), nutrient status, and plant development in several restored quarries. Soils restored using sewage sludge showed a threefold increase in SOC compared to the corresponding unamended ones, despite the moderate sludge dosage applied (below 50 tonnes/ha). Plant cover was also higher in amended soils, and recruitment was not affected by sludge amendment at these doses. This study demonstrates that, used at an appropriate rate, sewage sludge is a good alternative for the valorization of mine spoils in quarry restoration, improving some important regulatory ecosystem services such as carbon sequestration, without compromising woody plant encroachment.  相似文献   

7.
High erosion potential of dewatered kimberlite mine tailings after diamond extraction has prompted research at the Ekati Diamond Mine in the Canadian subarctic heath tundra ecosystem. Coarse texture, no organic component, lack of available macronutrients, and a serpentine chemistry are the principal limitations of these kimberlite tailings to plant colonization. Structure‐improving (peat moss, lake sediment, sewage sludge, Agri‐Boost, and composted papermill sludge) and nutrient‐providing (fertilizer, calcium carbonate, gypsum, and rock phosphate) amendments were tested in the greenhouse to ameliorate these limitations, thereby facilitating the field establishment of a permanent vegetation cover, which would stabilize the surface materials and promote natural colonization by the surrounding tundra vegetation. Seven native grass species (Arctagrostis latifolia, Calamagrostis canadensis, Poa glauca, Poa alpina, Deschampsia beringensis, Deschampsia caespitosa, and Festuca rubra) were used to measure amendment success. With the addition of structure‐improving and nutrient‐providing amendments, plant growth on kimberlite tailings was significantly enhanced. Tailings properties, including cation exchange capacity, percentage of organic carbon, and macronutrient availability, were also improved by amendment addition.  相似文献   

8.
High erosion potential of dewatered kimberlite mine tailings after diamond extraction has prompted research at the Ekati Diamond Mine in the Canadian subarctic heath tundra ecosystem. Greenhouse and field studies aimed at establishing a permanent vegetation cover on these dewatered tailings began in spring 2000. Coarse texture, no organic component, lack of available macronutrients, and a serpentine chemistry are the principal limitations of kimberlite tailings to plant colonization. Structure‐improving (peat moss, lake sediment, and sewage sludge) and nutrient‐providing (fertilizer, rock phosphate, calcium carbonate, and gypsum) amendments were tested to ameliorate these conditions, facilitating the establishment of a permanent vegetation cover, which stabilizes surface materials and promotes natural colonization by the surrounding tundra vegetation. Seven native grass species (Arctagrostis latifolia, Calamagrostis canadensis, Poa glauca, Poa alpina, Deschampsia beringensis, Deschampsia caespitosa, and Festuca rubra) were used to measure amendment success. With the addition of structure‐improving and nutrient‐providing amendments, plant growth on these kimberlite tailings under field conditions was significantly improved over unamended tailings material. Tailings properties, including cation exchange capacity, organic carbon, and macronutrient availability, were also improved with amendment addition.  相似文献   

9.
Soil seed banks can play an important role in the restoration of degraded ecosystems, especially where indigenous species are well represented in, and invasive species are largely absent from, the seed bank. Here, we studied the potential contribution of the soil seed bank to the restoration of invaded, abandoned agricultural fields in the Eastern Cape, South Africa. We recorded the aboveground cover and belowground abundance of all vascular plant species from 120 quadrats that differ in cover of the extralimital woody invader, Pteronia incana. Our results show that higher cover of P. incana is associated with lower species richness, aboveground cover, and belowground seed abundance. Furthermore, community similarity between the above‐ and belowground component was low, with the seed bank and standing vegetation having only 15 species in common and 49 species being recorded only from the seed bank. We suggest that this large number of seed bank‐only species is a relic of previous vegetation, prior to large‐scale invasion by P. incana. The most important finding from our study is the absence of P. incana from the soil seed bank. This finding, combined with the large number of mostly native species from the seed bank, holds promise from a restoration perspective. However, given the susceptibility of the invaded systems to erosion, coupled with the low grazing value of the seed bank species, we suggest that P. incana removal should be accompanied by both erosion control measures and reseeding with palatable grass species, to secure the livelihoods of local communities.  相似文献   

10.
The forest-steppe ecotone in NW Patagonia is a semiarid ecosystem affected by natural and anthropogenic fires, and overgrazing by sheep. Following a wild fire in the driest portion of this ecotone, a 3-year study was conducted to assess the impacts of a single application of inorganic and organic fertilizers on soil and vegetation recovery. Organic fertilizers were composts derived from biosolids and municipal solid wastes. Six treatments were evaluated: screened and unscreened biosolids compost and municipal solid wastes compost (40 Mg ha?1), inorganic fertilizer (100 kg N and 35 kg P ha?1), and no application. Soils were chemically characterized, and soil microbial activity was assessed as potential respiration and N-mineralization. Vegetation responses included plant cover, composition, phytomass, and N resorption prior to abscission, and leaf litter quality of the dominant species. Organic fertilizers increased soil organic matter, nutrients and microbial activity. Plant cover and aboveground phytomass, dominated by the native perennial tussock grass Poa ligularis, showed a higher increase with inorganic than with organic fertilization. While vegetation responded more to inorganic fertilizer, due to its higher initial pulse of available N, organic fertilizers had a positive impact on soil chemical and biological properties.  相似文献   

11.
本文研究了杨树清理1、2年后迹地的土壤种子库结构、多样性及其与地上植被和土壤因子的关系,并以未清理杨树洲滩为对照,探讨洞庭湖杨树清理迹地土壤种子库在植被自然恢复中的潜力。结果表明: 研究样地土壤种子库萌发出的植物种子分属23科59属65种,各样地土壤种子库密度和物种数大小为:1年迹地(11810粒·m-2,49种)>2年迹地(9686粒·m-2,44种)>对照(6735粒·m-2,29种)。与未清理洲滩相比,清理迹地土壤种子库与地上植被多年生中生和湿生植物物种多样性和相似性系数增加,土壤含水率和养分含量升高,pH值降低。土壤含水率和有机质与水蓼等湿生植物分布的关系密切,全钾和全磷对虉草等多年生植物分布的影响较大。在杨树清理迹地自然恢复过程中,随着土壤理化性质的变化,土壤种子库的物种数目和密度显著增加,以致地上植被物种多样性升高,因此,土壤种子库成为迹地湿地植被恢复的重要繁殖体来源。  相似文献   

12.
Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation establishment following shrub removal is likely to be by upland species.  相似文献   

13.
土壤种子库作为地上植被更新的潜在种源,在植被自然恢复和演替过程以及生态系统建设中起着重要作用。该研究对贺兰山低山区不同海拔高度植物群落土壤理化性质变化与其土壤种子库特征之间的关系进行分析,以揭示贺兰山低山区植物群落的土壤种子库空间分布特征和自然恢复潜力。研究结果表明:(1)海拔1200 m处种子主要来源于一年生草本,海拔1600 m土壤种子库主要来源于多年生草本,海拔2000 m土壤种子库主要来源于灌木和小灌木;随着海拔升高,隶属于禾本科的物种数呈下降趋势,菊科和藜科呈增加趋势,蒺藜科、大戟科、豆科和玄参科消失。(2)5个海拔高度土壤种子库物种数均显著低于地上植被;在物种生活型组成上,土壤种子库中物种数占比最大为一年生草本,地上植被为多年生草本。(3)土壤理化性质对种子库物种多样性影响中,土壤pH、电导率最为显著。贺兰山低山区5个海拔高度土壤种子库种子密度和物种多样性均较低,无法满足植被自然恢复需求,可通过飞播等生态恢复措施来弥补表层土壤种子的不足,从而满足地上植被恢复所需种源量。  相似文献   

14.
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration, but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems.  相似文献   

15.
Jiao J Y  Zou H Y  Jia Y F  Wang N 《农业工程》2009,29(2):85-91
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration, but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems.  相似文献   

16.
Question: How is vegetation succession on coal mine wastes under a Mediterranean climate affected by the restoration method used (topsoil addition or not)? How are plant successional processes influenced by local landscape and soil factors? Location: Reclaimed coal mines in the north of Palencia province, northern Spain (42°47′‐42°50′ N, 4°32′‐4°53′ W). Methods: In Jun–Jul 2008, vascular plant species cover was monitored in 31 coal mines. The mines, which had been restored using two restoration methods (topsoil addition or not), comprised a chronosequence of different ages from 1 to 40 yr since restoration started. Soil and environmental factors at each mine were monitored and related to species cover using a combination of ordination methods and Huisman–Olff–Fresco modeling. Results: Plant succession was affected by restoration method . Where topsoil was added, succession was influenced by age since restoration and soil pH. Where no topsoil was added, soil factors seem to arrest succession. Vegetation composition on topsoiled sites showed a gradient with age, from the youngest, with early colonizing species, to oldest, with an increase in woody species. Vegetation on non‐topsoiled sites comprised mainly early‐successional species. Response to age and pH of 37 species found on topsoiled mines is described. Conclusions: Restoration of coal mines under this Mediterranean climate can be relatively fast if topsoil is added, with a native shrub community developing after 15 yr. However, if topsoil is not used, it takes more than 40 yr. For topsoiled mines, the species found in the different successional stages were identified, and their tolerance to soil pH was derived. This information will assist future restoration projects in the area.  相似文献   

17.
Habitat creation and restoration schemes on former agricultural soils can be constrained by high residual soil fertility, a weedy seed bank, and a lack of suitable species in the seed rain. Topsoil inversion has been trialled across the United Kingdom as a novel technique to address these constraints. We investigated 15 topsoil inversion sites ranging in age (time since inversion) from 6 months to 5 years. We assessed surface soil fertility compared to adjacent noninverted soil, and vegetation composition with respect to the species introduced at each site. Soil organic matter, total and extractable N and P were lower in topsoil inversion surface soils, demonstrating that topsoil inversion can successfully reduce surface soil fertility prior to habitat creation and restoration. This reduction was maintained over the timescale of this study (5 years). Cornfield annual nurse crops provided instant visual appeal and gave way to grassland species over time. Sown species varied widely in their establishment success, and sowings were more successful than plug plantings. Grasses colonized naturally following sowing forb‐only seed mixes, allowing introduced forbs to establish early on with reduced competition from the seed bank. Plant communities did not yet resemble seminatural communities, but all were in the early stages of community development. Results indicate that topsoil inversion can successfully lower surface soil fertility and reduce competition between sown species and agricultural weeds.  相似文献   

18.
Soil disruption from open‐cut mining practices can adversely impact microbial communities and the ecosystem services that they mediate. Despite this, assessment of impacts of soil disruption, and the subsequent recovery of microbial communities is rarely studied. Monitoring of ecological restoration success on mine sites has traditionally focused on vegetation; however, most plants rely, at least in part, on associations with soil fungi for enhanced nutrient and water acquisition. Here, we used high‐throughput phylogenetic marker gene sequencing to characterize the diversity of soil fungal communities along a restoration chronosequence ranging from 3 to 23 years at a rehabilitated mine site. We used nonmined analogue sites as a baseline for comparative purposes and examined the associations of soil fungal communities with soil physicochemical and aboveground vegetation variables. Fungal richness on rehabilitated sites was significantly larger than on nonmined sites, suggesting that mixing of topsoil during stockpiling resulted in a composite microbial community. Fungal community composition was significantly influenced by edaphic variables and the length of rehabilitation, with mined sites becoming more similar to nonmined sites over time. Fungal populations associated with ectomycorrhizae were relatively more abundant than those associated with arbuscular mycorrhizae and declined in response to disturbance, but recovered over time on the woody dominated sites indicating a strong coupling of these fungi with aboveground vegetation. Our data indicate that soil fungal diversity is a useful bioindicator of soil restoration in mined sites and may complement more traditional vegetation‐based surveys.  相似文献   

19.
The objective of this study was to evaluate seven woody plant species on four growth media for their potential contribution to moose habitat and establishment of viable plant communities on a proposed mine site in southcentral Alaska. Populus balsamifera (balsam poplar), Salix alaxensis (feltleaf willow), S. barclayi (Barclay willow), S. bebbiana (Bebb willow), Alnus tenuifolia (thinleaf alder), Betula papyrifera (paper birch), and Picea glauca (white spruce) were selected for their functions in moose habitat, ease of propagation, and presence in the existing native vegetation. Three native soils were selected for biological characteristics such as different potential to form mycorrhizae and to regenerate local plant species, both of which are governed partly by existing vegetation. The fourth growth medium, glacial till or overburden, was expected to have little or no biological activity. A mining disturbance was simulated on three sites by removing existing vegetation from the plots, stripping the native soils, and then spreading these soil materials over the respective study plots. Rooted cuttings of the Salicaceae and nursery seedlings of the other species were planted in each of the four growth media. Height and survival of all plant species were greater on the three soil media than on the glacial till during the second and third years. Percentage of ectomycorrhizal infection on transplants was similar among growth media, although lower ectomycorrhizal infection occurred on volunteers in grassland soils than in the other growth media. Browsable plants were produced within three years on the disturbed native soils but not on the glacial till.  相似文献   

20.
In semiarid Mediterranean areas, the widespread environmental impact caused by the construction of motorways, railways, and pipelines has created an increasing need for effective restoration. We examined the influence of slope characteristics on vegetation and water erosion on 71 motorway slopes in a semiarid Mediterranean region. Specifically, we studied the effect of slope angle, type (roadfill vs. roadcut) and aspect (north vs. south) on soil properties, vegetation cover, species richness, floristic composition, and water‐caused erosion. Temporal dynamics of soil water content was monitored and related to the soil water potential in order to explain possible differences in vegetation cover between slope types. The main factors influencing vegetation on motorway slopes were the angle, type, and aspect of the slope. Vegetation was almost completely lacking on roadcuts with slopes greater than 45°. On gentler slopes, vegetation cover was 44–78% on roadfills but did not reach 10% on roadcuts, regardless of aspect. The main soil properties affected by the slope type and aspect were the organic matter content, soil available P, and water content. Rill erosion, gully erosion, and mass movement were all significantly higher on roadcuts than roadfills. A total of 308 spontaneous colonizers and seeded species were recorded. The type and aspect of the slope also controlled species composition. The short duration of available water in the soil with respect to soil water potential proved to be a limiting factor to plant colonization on roadcuts and south‐facing slopes as well as the low soil fertility in the case of roadcuts. Our results underscore the difficulty of revegetating slopes with angles greater than 45°, where the probability of seeds moving downhill is high. Future efforts should focus on increasing the surface roughness or building terraces at regular intervals in order to reduce slope angle to less than 45° and favor seed trapping and germination. On gentler slopes, adjusting of seed mixes according to dominant species associated with each slope type and aspect should improve considerably the success of roadside revegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号