首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A potassium chromate-tolerant bacterium was isolated from activated sludge, and the bacterium was identified as Pseudomonas ambigua G–1. The bacterium tolerated up to 2000 ppm of Cr6+, 1700 ppm of Cu2+ and 200 ppm of Cd2+, but did not tolerate Hg2+. Chemical analysis indicated 86.5% uptake in the soluble fraction and 13.5% uptake in the insoluble fraction of cells. Chromate uptake distribution in the soluble fraction indicated 28.9% in microsomal fraction and 78.1% in supernatant fraction, Chromate distribution in the insoluble fraction showed 61% in lipid-fraction and 21% in polyphosphate-polysaccharidefraction. Chromate inhibited the syntheses of protein, DNA in soluble fraction and RNA in microsomal fraction.  相似文献   

2.
Heavy-metal chromium [Cr(VI)] is a ubiquitous environmental pollutant. Comparing with chemical reduction, microbiological reduction is considered to be a friendly and cheaper way to decrease the damage caused by chromate. A bacterial strain, CR-07, which is resistant to and capable of reducing chromate was isolated from a mud sample of iron ore and identified as a Microbacterium sp. The bacterium had a high degree of tolerance to chromate, and could grow in LB medium containing 4.08 mM of K2Cr2O7. It also had a degree of resistance to other heavy metals, e.g. Cd2+, Pb2+, Zn2+, Cu2+, Co2+, Hg2+ and Ag+. The bacterium could remove 1.02 mM of Cr(VI) from LB medium within 36 h of incubation. Chromate removal was achieved in the supernatant from the bacterial cultures, and corresponded to chromate reduction. The activity of chromate reduction by the bacterium was not related to enzymes or reducing sugars, while fluorometric assay suggested that glutathione, a chromate-reducing substance which was produced by the bacterium, was one of the factors that contributed to the reduction of Cr(VI).  相似文献   

3.
A thermotolerant bacterium, identified as Bacillus licheniformis, completely utilized 0.1% (w/v) NH4NO3 at 30 and 50°C under aerobic condition. The addition of 0.5 mM Fe2+ to the NH4NO3 medium markedly promoted the utilization of NH4+ and NO3. At 50°C, of total nitrogen originally provided, 24% was taken up into the cells and 20% remained in the culture supernatant. Residual nitrogen (56%) was probably removed into the atmosphere. The cell extracts contained enzymes involved in denitrification. GC-MS demonstrated that NH4 15NO3 had been converted to 15N2O. These results indicate that the strain has denitrification ability under aerobic condition.  相似文献   

4.
A newly isolated heterotrophic marine bacterium,Vibrio alginolyticus, was used to remove a high load of ammonia gas under non-sterile condition. The cells were inoculated onto an inorganic packing material in a fixed-bed reactor (biofilter), and a high bad of ammonia, in the range of ammonia gas concentration of 170 ppm to 880 ppm, was introduced continuously. Sucrose solution and 3% NaCl was supplied intermittently to supplement the carbon source and water to the biofilter. The average percentage of gas removed exceeded 85% for 107-day operation. The maximum removal capacity and the complete removal capacity were 19 g-N kg−1 dry packing material day−1 and 16 g-N kg−1 dry packing material day−1, respectively, which were about three times greater than those obtained in nitrifying sludge inoculated onto the same packing material. On day 82, the enhanced pressure drop was restored to the normal one by NaOH treatment, and efficient removal characteristics were later observed. During this operation, the non-sterile condition had no significantly adverse effect on the removability of ammonia byV. alginolyticus.  相似文献   

5.
An NAD(P)H-dependent oxidoreductase has been purified approximately 40-fold from the soluble protein fraction of the dissimilatory iron-reducing, anaerobic, thermophilic bacterium Carboxydothermus ferrireducens. The enzyme, a flavoprotein, has broad-substrate specificity—reducing Fe3+, Cr6+, and AQDS with rates of 0.31, 0.33, and 3.3 U mg−1 protein and calculated NADH oxidation turnover numbers of 0.25, 0.25, and 2.5 s−1, respectively. Numerous quinones are reduced via a two-electron transfer from NAD(P)H to quinone, thus participating in managing oxidative stress by avoiding the formation of semiquinone radicals.  相似文献   

6.
A bacterium growing inside yeast cytoplasm was observed by light microscope without staining. The bacterium was separately stained from yeast cell by a fluorescent dye, 4′,6-diamidino-2-phenylindole (DAPI). The bacterium actively moved inside yeast cytoplasm and propagated in company with the yeast growth. The bacterium was separated from the yeast cytoplasm by selective disruption of yeast cells and the yeast without the intracellular bacterium (YWOB) was obtained by selective inactivation of bacterial cells. The yeast and the intracellular bacterium were identified as Candida tropicalis and Microbacterium sp., respectively. The length of Microbacterium sp. and C. tropicalis measured with SEM image was smaller than 0.5 μm and was larger than 5 μm, respectively. The yeast with the intracellular bacterium (YWIB) grew in a starch-based medium but the YWOB was not C. tropicalis has neither extracellular nor intracellular saccharification enzyme. Glucose was produced from starch by the extracellular crude enzyme (culture fluid) of Microbacterium sp. YWIB produced significantly more ethanol from glucose than YWOB but did not from starch. Conclusively, C. tropicalis is thought to catabolize starch dependent upon Microbacterium sp. growing in its cytoplasm and furnish stable habitat for the Microbacterium sp.  相似文献   

7.
A newly discovered bacterium, strain AC1, containing cellulase was isolated from the gastric juice of the mollusca, Ampullaria crosseans. Analysis of the 16S rDNA sequence and carbon sources revealed that the bacterium belonged to the genus Bacillus. A novel endoglucanase (Ba-EGA) was purified from culture supernatants of the bacterium growing in CMC-Na (low viscosity) induction medium. The cellulase was purified about 150-fold by ammonium sulfate fractionation, ion exchange, hydrophobic, and gel filtration chromatography, with a specific activity of 35.0 IU/mg. The molecular mass of the enzyme was 67 kDa. N-terminal amino acid sequencing revealed a sequence of SDYNYVEVLQKSILF, which had high homology with endoglucanases from the Bacillus and Clostridium species. The maximal activity of the enzyme with the substrate of CM-cellulose is at pH 4.5–6.5 and 70°C, respectively. The studies on pH and temperature stability showed that the Ba-EGA is stable enough between pH 7.5 and 10.5 at 30°C for 2 h, and more than 80% of the activity still remains when incubation was prolonged to 1 h at 50°C. The activity of the enzyme was significantly inhibited by Fe2+, Cu2+ (5.0 mM of each), and sodium dodecyl sulfate (SDS) (0.5%) and obviously activated by Tween 20 and Triton X-100 (0.25% each). Binding studies revealed that the Ba-EGA had cellulose-binding domain.  相似文献   

8.
The mode of chromosome segregation in an asymmetrically dividing bacterium, Caulobacter crescentus, was studied by examining the fate of labeled DNA strands. Swarmer cells (one type of Caulobacter daughter cell), in which single strands of DNA had been labeled with [3H]thymidine during the previous round of chromosome replication, were grown synchronously in a non-radioactive medium for two generations. The distribution of radioactivity among the cells was visualized by autoradiography under a phase-contrast microscope. The labeled DNA strands in each cell were found to consist of two conserved units. From this, we propose a model in which the swarmer cell has two identical chromosomes, which are segregated into the progeny swarmer cell and the progeny stalked cell after chromosome replication.  相似文献   

9.
Cobalt is an important oligoelement required for bacteria; if present in high concentration, exhibits toxic effects that, depending on the microorganism under investigation, may even result in growth inhibition. The photosynthetic bacterium Rhodobacter (R.) sphaeroides tolerates high cobalt concentration and bioaccumulates Co2+ ion, mostly on the cellular surface. Very little is known on the chemical fate of the bioaccumulated cobalt, thus an X-ray absorption spectroscopy investigation was conducted on R. sphaeroides cells to gain structural insights into the Co2+ binding to cellular components. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure measurements were performed on R. sphaeroides samples containing whole cells and cell-free fractions obtained from cultures exposed to 5 mM Co2+. An octahedral coordination geometry was found for the cobalt ion, with six oxygen-ligand atoms in the first shell. In the soluble portion of the cell, cobalt was found bound to carboxylate groups, while a mixed pattern containing equivalent amount of two sulfur and two carbon atoms was found in the cell envelope fraction, suggesting the presence of carboxylate and sulfonate metal-binding functional groups, the latter arising from sulfolipids of the cell envelope.  相似文献   

10.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It uses carbohydrates and peptides as carbon and energy sources to produce acetate, CO2, H2, l-alanine and ethanol as end products. Alcohol dehydrogenase activity was found to be present in the soluble fraction of T. hypogea. The alcohol dehydrogenase was purified to homogeneity, which appeared to be a homodimer with a subunit molecular mass of 40 ± 1 kDa revealed by SDS-PAGE analyses. A fully active enzyme contained iron of 1.02 ± 0.06 g-atoms/subunit. It was oxygen sensitive; however, loss of enzyme activity by exposure to oxygen could be recovered by incubation with dithiothreitol and Fe2+. The enzyme was thermostable with a half-life of about 10 h at 70°C, and its catalytic activity increased along with the rise of temperature up to 95°C. Optimal pH values for production and oxidation of alcohol were 8.0 and 11.0, respectively. The enzyme had a broad specificity to use primary alcohols and aldehydes as substrates. Apparent K m values for ethanol and 1-butanol were much higher than that of acetaldehyde and butyraldehyde. It was concluded that the physiological role of this enzyme is likely to catalyze the reduction of aldehydes to alcohols.  相似文献   

11.
Homogenates of silkworm pupal fat body were separated into particulate and supernatant fractions by centrifugation. The particulate fraction was further washed with EGTA. Adenylate cyclase activity of the washed particulate fraction was stimulated 2-fold by the addition of supernatant fraction in the presence of low concentrations of Ca2+. The activating factor in supernatant was heat-stable, non-dialyzable and trypsin-sensitive, and shown to be a Ca2+-dependent regulator protein. For the activation of adenylate cyclase by the regulator protein, the optimum concentrations of free Ca2+ were in a range of 2 µm, and higher concentrations of Ca2+ were inhibitory.  相似文献   

12.
Distribution of messenger RNA-coding sequences in fractionated chromatin   总被引:14,自引:0,他引:14  
  相似文献   

13.
A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg−1 by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.  相似文献   

14.
An anaerobic bacterium was isolated from a polluted sediment, with succinate and yeast extract as carbon and energy sources. The new strain was Gram-positive, the cells were coccal shaped, the mol% G+C content of the genomic DNA was 29, and the peptidoglycan was of the L-ornithine-D-glutamic acid type. Comparative sequence analysis of the 16S rRNA gene showed the new strain to belong to the genus Peptostreptococcus. Succinate, fumarate, pyruvate, 3-hydroxybutyrate and lysine supported growth. Succinate was degraded to propionate and presumably CO2, with a stoichiometric cell yield. Key enzymes of the methylmalonyl-CoA decarboxylase pathway were present. The methylmalonyl-CoA decarboxylase activity was avidin-sensitive and sodium dependent, and about 5 mM Na+ was required for maximal activity. Whole cells, however, required at least 50 mM sodium for maximal succinate decarboxylation activity and to support the maximum growth rate. Sodium-dependent energy conservation coupled to succinate decarboxylation is shown for the first time to occur in a bacterium belonging to the group of Gram-positive bacteria containing the peptostreptococci and their relatives.  相似文献   

15.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

16.
A cell fractionation procedure for obtaining membrane and flagellar fractions was developed using Trypanosoma cruzi epimastigote forms. The cells, swollen in an hypotonic medium, were disrupted in the presence of a nonionic detergent, and fractions were isolated by differential centrifugation. The flagellar fraction, pelleted in 10 min at 10,000g, was further purified on a sucrose gradient. The membrane fraction was obtained by centrifugation of the supernatant at 27,000g for 30 min. Electron microscopy of the isolated fractions demonstrated a high degree of purity of each fraction. The membrane fraction showed homogeneous vesicles with low ribosome content. In frozen-etched preparations, the distribution of intramembranous particles on the vesicles was similar to that of the plasma membrane of intact cells. Enzymatic assays indicated that the membrane and flagellar fractions had low contamination with mitochondria and lysosomes. 5′-Nucleotidase activity was not detected in the membrane fraction; Mg2+-dependent ATPase activity was slightly enhanced, although, the enzyme was not sensitive to Na+, K+, and Ca2+ ions. The membrane fraction showed about five times the adenylyl cyclase activity of the whole homogenate. Gel immunodiffusion revealed the whole antigen of T. cruzi extracted by formamide to be identical to the membrane fraction when both were tested against rabbit anti- T. cruzi (epimastigote) immune serum.  相似文献   

17.
Cellulase activity of a haloalkaliphilic anaerobic bacterium, strain Z-7026   总被引:3,自引:0,他引:3  
Summary The cellulolytic activity of an alkaliphilic obligate anaerobic bacterium, Z-7026, which was isolated from the microbial community of soda-lake sediments and belongs to the cluster III of Clostridia with low G+C content, was studied. The bacterium was capable of growing in media with cellulose or cellobiose as the sole energy sources. Its maximal growth rate on cellobiose (0.042–0.046 h–1) was observed at an initial pH value of 8.5–9.0, whereas the maximal rate of cellulase synthesis, assayed by using a novel fluorimetric approach, was found to be 0.1 h–1 at pH 8–8.5. Secreted proteins revealed high affinity for cellulose and were represented by two major forms of molecular masses of 75 and 84 kDa, whereas the general protein composition of the precipitated and cellulose-bound preparations was similar to cellulosome subunits of Clostridium thermocellum. The optimum pH of the partially purified enzyme preparation towards both amorphous and crystalline cellulose was in the range 6–9, with more than 70% and less than 50% of maximal activity being retained at pH 9.2 and 5.0, respectively.  相似文献   

18.
A NADH-dependent nitroreductase from an efficient nitro-reducing soil bacterium, Streptomyces mirabilis DUT001, was isolated and characterized. The enzyme was purified to near homogeneity using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration chromatography. The native enzyme was estimated by gel filtration to have a molecular weight of 68 kDa, and its subunit molecular weight determined by SDS-PAGE was about 34 kDa, which indicated this enzyme was a dimer. Polycyclic nitroaromatic compounds were preferred substrates for this enzyme. The purified enzyme exhibited maximum activity at pH 7.5 and 40 °C. The addition of various chemicals such as reducing agents, metal ions, and chelating agents, had effects on enzyme activity. Mg2+, Ca2+, Sr2+, and 1% (w/v) Triton X-100 increased activity. However, Hg2+, Co2+, Ni2+, Cu2+, and SDS reduced activity. The maximum reaction rate (Vmax) was 64 μM min?1 mg?1 enzyme and the apparent Michaelis–Menten constants (Km) for 4-nitro-1,8-naphthalic anhydride and NADH were 276 and 29 μM, respectively. Menadione, bimethylenebis, sodium benzoate, and antimycin A were inhibitors of the purified nitroreductase with apparent inhibition constants (Kis) of 20, 36, 44 and 80 μM, respectively.  相似文献   

19.
Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe3+) results in the production of ferrous iron (Fe2+) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe2+ from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe2+. The export function of FeoE is specific for Fe2+, as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd2+, Co2+, Cu2+, Mn2+, Ni2+, or Zn2+). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd2+/Zn2+ or Fe2+/Zn2+ exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe2+ compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe2+ exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found.  相似文献   

20.
Glycollic acid, supplied at a concentration of 1 mg l?1, increased the relative growth rate of Skeletonema costatum (Grev.) Cleve growing in bacterized culture at limiting light intensities. There was little or no such effect at intensities approaching saturation. The presence in the medium of alumina, an adsorbent for glycollate, prolonged the lag phase, the cells remaining viable for up to 5 days. Uptake of glycollate was not appreciably affected by the bicarbonate concentration of the medium. After 3 h, 80–92% of the glycollate carbon assimilated was found in the alcohol and benzene insoluble fraction of the cells. This is in agreement with the supposition that glycollate carbon is as-similated directly by the diatom rather than after degradation by bacteria to carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号