首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
闽北地区森林群落物种多样性的测定   总被引:2,自引:0,他引:2  
采用8个物种多样性指数对闽北地区的8个森林群落类型物种多样性进行测定,并选用4个种一多度关系模型(对数正态分布、Weibull分布、对数级数分布、生态位优先占领模型)分析其物种-多度关系,把多样性指数与对数正态分布、Weibull分布和生态位优先占领模型的有关参数进行线性回归,以分析多度模型参数描述物种多样性的可行性。结果表明:(1)多数物种多样性指数对群落的测度是一致的,(2)对数正态分布、Weibull分布和生态位优先占领模型对8个群落的物种多度拟合效果很好;(3)对数正态分布、Weibull分布和生态位优先占领模型有关模型参数与部分物种多样性指数的线性关系达显著或极显著水平。通过闽北地区8个类型森林群落物种多样性指数测定,使生物多样性较准确地数量化,同时还说明采用改进单纯形法进行非线性分布函数的拟合是简单有效的,可推广应用。  相似文献   

2.
This paper proposes a statistical generalized species-area model (GSAM) to represent various patterns of species-area relationship (SAR), which is one of the fundamental patterns in ecology. The approach enables the generalization of many preliminary models, as power-curve model, which is commonly used to mathematically describe the SAR. The GSAM is applied to simulated data set of species diversity in areas of different sizes and a real-world data of insects of Hymenoptera order has been modeled. We show that the GSAM enables the identification of the best statistical model and estimates the number of species according to the area.  相似文献   

3.
Various models of the species-abundance distribution (SAD) have been proposed to fit empirically derived data however there is no general consensus as to which model provides the best fit. Further, the zero-sum multinomial SAD model (ZSM) was proposed as a metacommunity model, yet it has not previously been fitted at the metacommunity scale. We note that SAD models based on compound lognormal distributions (such as the Poisson-lognormal, PLN, and the negative binomial-lognormal models, NBLN) can also be thought of as metacommunity models, and we compare these with the ZSM when fitted as metacommunity models to SADs of related communities.
We collected five datasets in the Sydney Basin, eastern Australia, representing five different types of subtropical/temperate plant communities ranging from closed warm-temperate rainforest to open wet sclerophyll forest to dry sclerophyll woodland. For each type of plant community, five local communities were identified across the Sydney Basin, and SAD data collected in five randomly placed 0.2-ha quadrats at each local community. Analysis was performed at two levels: all abundance data from each local community were pooled across each metacommunity and analysed as a single pooled community; and a metacommunity model was fitted to all five local communities of a community type, simultaneously. For the pooled data, we considered the negative-binomial (NB) and the log-series (LS) models in addition to ZSM, PLN and NBLN. All five models performed similarly, however the LS had a better fit to three pooled communities and the ZSM and PLN to the remaining two communities. By contrast, the ZSM performed statistically better against the PLN and NBLN when considered as a metacommunity model. We conclude that the ZSM generally provides a more reliable null model for metacommunity abundance data than the lognormal model.  相似文献   

4.
为了解鄱阳湖湿地草洲植物群落的结构,对其3种典型草洲植物群落种-面积关系进行了研究。采用巢式样方法调查植物物种数量,并用3种非饱和曲线拟合种-面积方程。结果表明,基于实测数据,3个草洲物种数随着取样面积的增加先快速增加后趋于平稳;群落最小取样面积均为30 m~2。幂函数模型对3个草洲群落的种-面积关系拟合效果均为最佳,3个草洲群落的RSE分别为0.35、0.35和0.56,AAD分别为0.23、0.17和0.35,AARD分别为0.06、0.02和0.07,而指数模型、Fisher模型的拟合效果一般。指数模型计算得到的不同比例因子下3个草洲最小取样面积与实际情况最为吻合。这为鄱阳湖区进行植物群落数据采集的样方设置提供了理论参考。  相似文献   

5.
Moore JE  Swihart RK 《Oecologia》2007,152(4):763-777
A community is "nested" when species assemblages in less rich sites form nonrandom subsets of those at richer sites. Conventional null models used to test for statistically nonrandom nestedness are under- or over-restrictive because they do not sufficiently isolate ecological processes of interest, which hinders ecological inference. We propose a class of null models that are ecologically explicit and interpretable. Expected values of species richness and incidence, rather than observed values, are used to create random presence-absence matrices for hypothesis testing. In our examples, based on six datasets, expected values were derived either by using an individually based random placement model or by fitting empirical models to richness data as a function of environmental covariates. We describe an algorithm for constructing unbiased null matrices, which permitted valid testing of our null models. Our approach avoids the problem of building too much structure into the null model, and enabled us to explicitly test whether observed communities were more nested than would be expected for a system structured solely by species-abundance and species-area or similar relationships. We argue that this test or similar tests are better determinants of whether a system is truly nested; a nested system should contain unique pattern not already predicted by more fundamental ecological principles such as species-area relationships. Most species assemblages we studied were not nested under these null models. Our results suggest that nestedness, beyond that which is explained by passive sampling processes, may not be as widespread as currently believed. These findings may help to improve the utility of nestedness as an ecological concept and conservation tool.  相似文献   

6.
小兴安岭阔叶红松林木本植物种-面积关系   总被引:1,自引:1,他引:0  
王睿智  国庆喜 《生态学报》2016,36(13):4091-4098
种-面积关系研究是了解植物群落结构的重要途径,是群落生态学的基本问题。不同的研究方法对种-面积关系影响很大。利用黑龙江省小兴安岭两个10.4 hm2样地和5个1.0 hm2样地的调查数据,采用移动窗口法确定各样地的最小取样面积,避免了巢式取样法及随机样方法的不足。并采用4种种-面积关系模型进行拟合,评价各关系模型的适合度。在此基础上,基于最小面积进行模拟随机取样,探讨取样大小对物种数估计精度的影响。研究结果表明:由于拟合曲线模型的适用性及曲线外推可靠性问题的存在,采用拟合曲线的方法所估计的最小面积与实际值偏差较大。实际调查得到的各样地最小面积40 m×40 m—45 m×45 m,说明小兴安岭地区阔叶红松林群落所需的最小面积基本一致,但各样地群落结构的差异却在对取样数量的要求上体现出来。其中丰林与大亮子河样地物种数分布相对均匀,所需最小样方数量较少;而方正与胜山样地物种数分布异质性较大,差异的机理还有待于进一步研究。  相似文献   

7.
8.
以陕西纸房沟流域为研究单元,于2006-2008年,对该流域恢复区8种林分进行系统调查,运用不同模型分析了各林分节肢动物群落种-面积、多度关系.不同林分节肢动物群落种-面积关系符合S=CAm,种类数随着面积增加接近一个常数,并得出相应最小调查面积,其大小排序为:自然灌木林>自然乔木林>杨树 刺槐混交林>柠条-沙棘混交林>柠条林>沙棘林>刺槐林>柳树林,说明林分类型越复杂,需要调查节肢动物群落的最小面积越大.在抽样调查基础上建立了不同林分节肢动物种-多度模型,天然恢复林地节肢动物以对数正态模型(LN)的拟合效果最佳,表明群落中个体数量居中的节肢动物种类较多,稀有种和富有种种类较少,优势种不明显;在混交林和纯林中,节肢动物群落以对数柯西模型(LC)的拟合效果最佳,与天然恢复林相比,其节肢动物群落中稀有种和富有种种类较多,优势种比较突出.  相似文献   

9.
Aims Fits of species-abundance distributions to empirical data are increasingly used to evaluate models of diversity maintenance and community structure and to infer properties of communities, such as species richness. Two distributions predicted by several models are the Poisson lognormal (PLN) and the negative binomial (NB) distribution; however, at least three different ways to parameterize the PLN have been proposed, which differ in whether unobserved species contribute to the likelihood and in whether the likelihood is conditional upon the total number of individuals in the sample. Each of these has an analogue for the NB. Here, we propose a new formulation of the PLN and NB that includes the number of unobserved species as one of the estimated parameters. We investigate the performance of parameter estimates obtained from this reformulation, as well as the existing alternatives, for drawing inferences about the shape of species abundance distributions and estimation of species richness.Methods We simulate the random sampling of a fixed number of individuals from lognormal and gamma community relative abundance distributions, using a previously developed 'individual-based' bootstrap algorithm. We use a range of sample sizes, community species richness levels and shape parameters for the species abundance distributions that span much of the realistic range for empirical data, generating 1?000 simulated data sets for each parameter combination. We then fit each of the alternative likelihoods to each of the simulated data sets, and we assess the bias, sampling variance and estimation error for each method.Important findings Parameter estimates behave reasonably well for most parameter values, exhibiting modest levels of median error. However, for the NB, median error becomes extremely large as the NB approaches either of two limiting cases. For both the NB and PLN,>90% of the variation in the error in model parameters across parameter sets is explained by three quantities that corresponded to the proportion of species not observed in the sample, the expected number of species observed in the sample and the discrepancy between the true NB or PLN distribution and a Poisson distribution with the same mean. There are relatively few systematic differences between the four alternative likelihoods. In particular, failing to condition the likelihood on the total sample sizes does not appear to systematically increase the bias in parameter estimates. Indeed, overall, the classical likelihood performs slightly better than the alternatives. However, our reparameterized likelihood, for which species richness is a fitted parameter, has important advantages over existing approaches for estimating species richness from fitted species-abundance models.  相似文献   

10.
为解释长白山温带森林群落构建和物种多度格局的形成过程, 该文以不同演替阶段的针阔混交林监测样地数据为基础, 采用中性理论模型、生物统计模型(对数正态分布模型)和生态位模型(Zifp模型、分割线段模型、生态位优先模型)拟合森林群落物种多度分布, 并用χ 2检验、Kolmogorov-Smirnov (K-S)检验和赤池信息准则(AIC)选择最佳拟合模型。结果显示: 中性模型能很好地预测长白山温带森林不同演替阶段植物群落的物种多度分布。在10 m × 10 m尺度上, 5种模型均可被χ 2检验和K-S检验接受, 但中性模型拟合效果不如对数正态分布模型、Zifp模型、分割线段模型和生态位优先模型, 表明小尺度上中性过程和生态位过程均能解释群落物种多度分布, 但生态位过程的解释能力相对较大。而在中大尺度上(30 m × 30 m、60 m × 60 m和90 m × 90 m), 中性模型为最优拟合模型, 并且随着研究尺度增加, 生态位模型和生物统计模型逐渐被χ 2检验拒绝, 表明中性过程在长白山针阔混交林群落物种多度分布格局形成中的作用随着研究尺度增加而逐渐增大。该文证实了中性过程在长白山温带针阔混交林群落结构形成中具有重要作用, 但未否认生态位机制在群落构建中的贡献。因此, 温带森林群落构建过程中中性理论和生态位理论并非相互矛盾, 而是相互融合的。在研究森林群落物种多度分布时, 应重视取样尺度和演替阶段的影响, 并采用多种模型进行拟合。  相似文献   

11.
吉林蛟河42 hm2针阔混交林样地植物种-面积关系   总被引:1,自引:0,他引:1       下载免费PDF全文
 种-面积关系是生态学中的基本问题, 其构建方式对种-面积关系的影响以及最优种-面积模型的选择仍然存在争议。该文利用吉林蛟河42 hm2针阔混交林样地数据, 分别采用巢式样方法和随机样方法建立对数模型、幂函数模型和逻辑斯蒂克模型, 并通过赤池信息量准则(AIC)检验种-面积模型优度。结果表明, 种-面积关系受到取样方法的影响, 随机样方法的拟合效果优于巢式样方法。采用随机样方法构建的幂指数模型(AIC = 89.11)和逻辑斯蒂克模型(AIC = 71.21)优于对数模型(AIC = 113.81)。根据AIC值可知, 随机样方法构建的逻辑斯蒂克模型是拟合42 hm2针阔混交林样地种-面积关系的最优模型。该研究表明: 在分析种-面积关系时不仅应考虑尺度效应, 还需注意生境变化及群落演替的影响。  相似文献   

12.
Testing the standard neutral model of biodiversity in lake communities   总被引:3,自引:1,他引:2  
Steven C.Walker  HélèneCyr 《Oikos》2007,116(1):143-155
Hubbell's (2001) neutral model describes how local communities are structured if population dynamics are statistically identical among species in a constant, possibly patchy, environment with random speciation. Tests of this model have been restricted largely to terrestrial communities. Here we tested the fit of this neutral model to fish, zooplankton and phytoplankton species–abundance distributions from 30 well-studied lake communities varying widely in lake size and productivity. We measured the fit of the communities to the neutral model in three ways. All but two zooplankton (7 of 9) and all but three fish (9 of 12) communities were consistent with all three measures of fit. However, all nine phytoplankton communities did not fit the neutral model by at least one measure. This result for phytoplankton communities represents to date the most consistent failure of the standard neutral model to predict the shape of species-abundance distributions.  相似文献   

13.
Abstract. The influence of pine afforestation on the species diversity of plant communities on ultramafic substrate was investigated in an area of Tuscany, central Italy, by means of species-area relationships, plant unit area, the Gini coefficient and the pattern of the index of Jaccard in relation to plot size. The species-area relationship was found to best fit the semilogarithmic model. Contrary to the available data for temperate ecosystems, tree canopy cover was found to increase the α-diversity of the understorey vegetation and its cover. The nutrient input due to the pine canopy caused an increase in the abundance of the grass Festuca inops — which was already present in the community — and subsequently the spread of several grassland species leading to a reduction in dominance concentration and to the formation of a species-rich grassland. The pine cover caused a decrease in floristic resemblance between plots, especially when the canopy cover is scattered. The increase in species richness found under the pine canopy, where the metal content in the soil is higher, suggests that potentially toxic metals are not the most limiting factor in Tuscan ultramafic soils. The typical poorness of vegetation on ultramafic soils should be first of all related to hydrological and nutritional stresses.  相似文献   

14.
The relationship between species diversity and sampled area is fundamental to ecology. Traditionally, theories of the species-area relationship have been dominated by random-placement models. Such models were used to formulate the canonical theory of species-area curves and species abundances. In this paper, however, armed with a detailed data set from a moist tropical forest, we investigate the validity of random placement and suggest improved models based upon spatial aggregation. By accounting for intraspecific, small-scale aggregation, we develop a cluster model which reproduces empirical species-area curves with high fidelity. We find that inter-specific aggregation patterns, on the other hand, do not affect the species-area curves significantly. We demonstrate that the tendency for a tree species to aggregate, as well as its average clump size, is not significantly correlated with the species' abundance. In addition, we investigate hierarchical clumping and the extent to which aggregation is driven by topography. We conclude that small-scale phenomena such as dispersal and gap recruitment determine individual tree placement more than adaptation to larger-scale topography.  相似文献   

15.
Species–area relationships (SARs) are a common tool to assess the impacts of habitat loss on species diversity. Species–area models that include habitat effects may better describe biodiversity patterns; also the shape of the SAR may be best described by other models than the classical power model. We compared the fit of 24 SAR models, i.e. eight basic models using three approaches: (i) single-habitat models, (ii) multi-habitat models which account for the effect of the habitat composition on total species diversity (= choros models) and (iii) multi-habitat models which also account for the differential use of habitats by different species groups (= countryside models). We use plant diversity data from a multi-habitat landscape in NW Portugal. Countryside models had the best fit both when predicting species–area patterns of species groups and of total species richness. Overall, choros models had a better fit than single-habitat models. We also tested the application of multi-habitat models to land-use change scenarios. Estimates of species richness using the choros model only depended on the number of habitats in the landscape. In contrast, for the countryside model, estimates of species richness varied continuously with the relative proportion of the different habitat types in the landscape, and projections suggest that land-use change impacts may be moderated by a species’ ability to use multiple habitats in the landscape. We argue that the countryside SAR is a better model to assess the impacts of land-use changes than the single-habitat SAR or the choros model, as species often face habitat change instead of real habitat loss, and species response to change is contingent on their differential use of habitats in the landscape.  相似文献   

16.
Small, isolated communities in harsh environments are sometimes found to contain many, very rare species together with a few, extremely abundant ones. The species-abundance distribution (frequencies of species vs. abundance levels) drops rapidly from an initial peak to an elongated tail. A distribution with similar form is also predicted by a model of resource apportioning. This concurrence has been viewed by some as evidence of the accuracy of the model. However, it is shown here that such a form is to be expected whenever species abundances are not influenced greatly by either immigration or density-dependent regulation.The species-abundance distribution in larger communities is often found to increase initially to a mode, and then decrease to an elongated tail. This form is also to be expected whenever each species in the larger “community” consists of a substantial number of roughly independent populations.  相似文献   

17.
Liu WD  Su JR  Li SF  Zhang ZJ  Lang XD 《应用生态学报》2011,22(2):317-322
Based on the investigation data of monsoon evergreen broad-leaved forest at its different succession stages (primary, CP; 15 years of succession, CF; and 30 years of succession, CT) in Pu' er of Yunnan Province, this paper studied the species-area relationship of this forest at each succession stage. It was found that in the communities at each succession stage, the number of total species, trees, shrubs, and lianas had a significant correlation with sampling area, with the area explained over 94% of the total variation. The Z value of the total species (0.334) and trees (0.394) was the lowest at CT, whereas that of shrubs (0.437) and lianas (0.326) was the lowest at CF. No significant differences were observed in the intercepts of the species-area curve of total species, trees, shrubs, and lianas among different succession stages, but the coefficient of determination (R2) of the species-area curve of total species and lianas was the highest at CP. The richness of trees and shrubs at CF explained 99.9% of the variance of Z value, but the richness of total species, trees, shrubs, and lianas at CP and CT had no significant correlations with the Z value.  相似文献   

18.
We extend the neutral theory of macroecology by deriving biodiversity models (relative species abundance and species-area relationships) in a local community-metacommunity system in which the local community is embedded within the metacommunity. We first demonstrate that the local species diversity patterns converge to that of the metacommunity as the size (scale) of the embedded local community increases. This result shows that in continuous landscapes no sharp boundaries dividing the communities at the two scales exist; they are an artificial distinction made by the current spatially implicit neutral theory. Second, we remove the artificial restriction that speciation cannot occur in a local community, even if the effects of local speciation are small. Third, we introduce stochasticity into the immigration rate, previously treated as constant, and demonstrate that local species diversity is a function not only of the mean but also of the variance in immigration rate. High variance in immigration rates reduces species diversity in local communities. Finally, we show that a simple relationship exists between the fundamental diversity parameter of neutral theory and Simpson's index for local communities. Derivation of this relationship extends recent work on diversity indices and provides a means of evaluating the effect of immigration on estimates of the fundamental diversity parameter derived from relative species abundance data on local communities.  相似文献   

19.
万方浩  陈常铭 《生态学报》1986,6(4):347-355
对数级数模式是描述稻田害虫-天敌群落种-多度分布的理想模式。资料表明两个呈单一对数级数分布的群落经混合扩大后仍为对数级数分布.Shannon-weaver多样性指数比其他指数有较强的判别力。但在大样本中,对群落组成的变化亦不敏感,采用对数级数分布的参数(?)作为多样性统计量较为合适。  相似文献   

20.
物种-多度格局研究是揭示群落组织结构和物种区域分布规律的重要手段。该研究以青藏高原东北部的甘南高寒草甸为研究对象, 基于野外调查和室内分析, 研究了不同坡向的环境因子、植物群落分布, 并利用RAD软件程序包对其进行了拟合分析。结果显示: 在南坡-北坡上, 土壤含水量从南坡(0.18 g·g -1)到北坡(0.31 g·g -1)呈现递增的趋势, 土壤温度从南坡(22.33 ℃)到北坡(18.13 ℃)以及光照强度从南坡(744.15 lx)到北坡(681.93 lx)均呈逐渐减小的趋势。物种-多度分布曲线的斜率从南坡向北坡依次减小。随着坡向由南向北转变, 物种-多度和物种多样性都呈递增的趋势。通过6个模型对坡向梯度的物种-多度分布进行拟合发现, 甘南高寒草甸区的物种-多度分布主要是以生态位模型为主, 其次是随机分布模型。青藏高原高寒草甸微生境梯度上的物种在总体上的资源分配模式是以固定分配模式为主, 稀有种的资源分配模式是以随机性模型为主, 常见种的资源分配模式则是以确定性模型为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号