首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
设定半致死低盐试验组(盐度 7)和正常对照组(盐度 28)对三疣梭子蟹进行 48h 的胁迫, 检测半致死盐度胁迫下不同时间点三疣梭子蟹组织中抗氧化酶和 ATP 酶活力的变化。结果显示, 随着低盐处理时间的延长, 三疣梭子蟹肝胰腺、鳃、肌肉中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活力均呈下降趋势, 极显著低于对照组(P<0.01), 各组织中 SOD、 CAT 活力大小顺序为肌肉 >肝胰腺>鳃; 肝胰腺、鳃中谷胱甘肽过氧化物酶(GPX)、谷胱甘肽转硫酶(GST)、谷胱甘肽还原酶(GR)、Na+/K+-ATPase 酶和 Ca2+/Mg2+-ATPase 酶活力也都被抑制, 活力极显著下降(P<0.01); 而对照组在试验期间各组织酶活均较 平稳, 变化不大。试验结论表明 , 当盐度下降剧烈, 超出机体耐受范围时, 三疣梭子蟹生理机能被抑制, 酶活力反而下降。  相似文献   

2.
以日本鳗鲡(505.1±35.7)g为实验对象,分别在淡水(盐度0)、盐度10和盐度33条件下处理14 d,在0、1、4、12、24、96 h和14 d时测定其血清渗透压、离子(Na+、K+、Cl-)浓度和鳃Na+/K+-ATP酶活力指标。结果表明:日本鳗鲡血清等渗点为329.1 m Osm·kg-1,其对应盐度为10.48;随着处理时间延长,盐度处理组血清渗透压、Na+和Cl-浓度均呈现先上升后下降的趋势;血清K+浓度受盐度影响较小(P0.05);盐度10处理组鳃Na+/K+-ATP酶活力于12 h达到最小值(5.40±0.72)μmol·mg-1·h-1,至96 h时恢复至淡水组水平(P0.05);而盐度33处理组鳃Na+/K+-ATP酶活力则表现为先快速下降,后快速上升,并于24 h达到最大值(13.05±0.62)μmol·mg-1·h-1,约为淡水组的1.5倍(P0.05)。日本鳗鲡的渗透压调节可初步分为3个阶段:(1)快速升高期,血清渗透压、Na+和Cl-浓度异常升高,鳃Na+/K+-ATP酶活力受到抑制;(2)缓慢升高期,鱼体补偿失水以缓解渗透压升高,血清渗透压、Na+和Cl-浓度表现为缓慢升高,鳃Na+/K+-ATP酶被激活;(3)适应期,鳃Na+/K+-ATP酶活力处于较高水平,血清渗透压、离子浓度基本恢复。  相似文献   

3.
为研究不同盐度对大麻哈鱼幼鱼存活率、鳃ATP酶活力及其组织结构的影响, 试验共设置4个盐度组(S0、S8、S16、S24), 试验周期42d, 解剖取鱼鳃测定ATP酶活力, 并运用组织切片及扫描电镜技术观察其鳃组织结构的变化。结果显示: S8和S16组大麻哈鱼幼鱼存活率最高, 均达到98.89%, S0组存活率为94.45%, 而S24组存活率最低, 为83.34%。随着盐度的升高, 大麻哈鱼幼鱼鳃组织Na+/K+-ATP和Ca2+/Mg2+-ATP酶活力均呈现出先升高后下降的趋势且酶活力最高的均为S8组、最低的为S24组。鳃丝宽度随盐度升高逐渐增大且各组之间呈现出显著性差异(P<0.05), 而鳃小片长度和宽度均随盐度升高逐渐减小。扫描电镜结果表明随着盐度的升高线粒体丰富细胞数量逐渐增多、顶膜变小且微绒毛消失; 同S0组相比, S8组和S16组鳃丝表面扁平上皮细胞之间的轮廓更加清楚且环形微脊条纹清晰, 而S24组鳃丝表面扁平上皮细胞之间界限模糊, 环形微脊间有融合或间断情况; 鳃小片底部扁平上皮细胞表层结构由清晰逐渐变得混乱、气孔数量逐渐减少且孔径变小。因此推测大麻哈鱼幼鱼在降海阶段适宜的盐度生存范围可能介于8‰—16‰, 具体有待进一步研究。  相似文献   

4.
李玉全  李永生  赵法箴 《生态学报》2015,35(21):7229-7235
为探讨盐度变化对脊尾白虾(Exopalaemon carinicauda)渗透、代谢及免疫相关酶活力的影响,实验设置了盐度渐变和骤变两个实验。渐变实验,设置5、10、15、20、25、30、33(CK)、40和45共9个盐度梯度;骤变实验,盐度从33突变至0、5、15、25和45,检测血清ATP酶(包括Na+/K+-ATP酶和总ATP酶)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)及超氧化物歧化酶(SOD)活力。结果表明,渐变情况下,盐度为5时,ATP酶活力出现最高值,然后随着盐度的升高表现出先降低后升高的趋势。总ATP酶活力在盐度为15—30之间较稳定,并在此范围内达到最低值。AKP和ACP活力几乎不受盐度渐变的影响。SOD活力随盐度的升高,先上升后下降,并在盐度为33时达到最大值。骤变情况下,ATP酶活力随时间波动较大,AKP和SOD随时间波动较小,而ACP几乎不受影响。结果说明,盐度骤变对脊尾白虾酶活力的影响较盐度渐变明显,ATPase和SOD活力更易随盐度而变化,代谢酶(AKP、ACP)受盐度变化的影响较小,说明渗透调节和免疫相关酶活力对盐度变化反应敏感,养殖过程中应尽量保持盐度稳定。  相似文献   

5.
为研究长期不同水体盐度对中华绒螯蟹(Eriocheir sinensis以下简称河蟹)成体雄蟹渗透压调节和生理代谢的影响, 在不同水体盐度条件下(0、6、12和18)对河蟹雄体进行为期60d的养殖实验, 并分别检测其渗透调节及生理代谢相关指标。结果显示: (1)血清渗透压、Na+、Mg2+和Cl-含量随水体盐度上升而显著上升(P0.05), K+和Ca2+含量有上升趋势, 但各盐度组差异不显著(P0.05); 无论何组雄蟹, 其血清渗透压均显著高于对应的水体渗透压; (2)0组雄蟹后鳃Na+/K+-ATP酶活性显著高于其他组(P0.05), 其他各组间差异不显著(P0.05); (3)就血清生理代谢指标而言, 12组雄蟹血清中甘油三酯(TG)含量显著高于其他组(P0.05), 而尿酸(UA)、葡萄糖(Glu)、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性相对较低; 所有组尿素(Urea)、碱性磷酸酶(ALP)含量差异不显著(P0.05); (4)就肝胰腺生理代谢指标而言, 6组肝胰腺MDA含量和-谷氨酰转肽酶(-GT)活力最低, 12组酸性磷酸酶(ACP)和-GT活性显著高于其他盐度组(P0.05)。因此, 适当提高水体盐度可提高河蟹成体雄蟹的血清渗透压及其主要离子含量, 同时降低其后鳃中Na+/K+-ATP酶活性。肝胰腺和血清代谢指标暗示12盐度组雄体的代谢水平相对较低, 具有较强的免疫性能和抗氧化能力。  相似文献   

6.
通过探讨低盐(盐度为0、1.7、5、10、15和20)对菊黄东方鲀(Takifugu flavidus)幼鱼生长、存活、耗氧、鳃Na+/K+-ATP酶以及肝抗氧化酶的影响,研究了菊黄东方鲀幼鱼对低盐的适应性。结果显示,菊黄东方鲀幼鱼在盐度0组实验3周后全部死亡;盐度1.7组实验6周幼鱼大量死亡,最后成活率相当低,仅17.33%;盐度5、10、15和20组的幼鱼在整个实验中没有出现死亡现象。全长特定生长率在盐度1.7~20组之间没有显著差异。体重特定生长率,1.7盐度组比其他盐度组显著低(P0.05),5~20盐度组之间没有显著差异(P0.05)。最高的全长特定生长率和最高的体重特定生长率均出现在10盐度组。前6周的饵料系数在盐度1.7~20组之间没有显著差异,但最高(1.27)和最低(1.17)的饵料系数分别出现在1.7和10盐度组,总饵料系数在5~20盐度组之间没有显著差异。幼鱼的耗氧率在5~20盐度组之间没有显著差异,但最低的耗氧率出现在10盐度组。最低的鳃Na+/K+-ATP酶(NKA)活性出现在10盐度组,5~20盐度与NKA活性的关系可以用二次函数来拟合(y=0.083 2 x2﹣2.125 2 x+20.915,r2=0.977 9),由此得到理论上最低NKA活性值出现在盐度12.77。肝超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性在盐度1.7~20组之间均无显著差异,而10和15盐度组的过氧化氢酶(CAT)活性比1.7和20盐度组的显著低(P0.05),1.7~20盐度与CAT活性关系可以用二次函数来拟合(y=0.257 7 x2﹣5.807 6 x+87.357,r2=0.877 1),由此得到理论上最低CAT活性值出现在盐度11.27。研究结果表明,盐度1.7是菊黄东方鲀幼鱼的生存极限低盐,盐度5以上已经能适合其存活和生长,盐度10~15是的菊黄东方鲀幼鱼的最适宜盐度范围,适当降低盐度对菊黄东方鲀幼鱼的养殖生产是有利的。建议菊黄东方鲀幼鱼养殖盐度至少在5以上,最好在10~15范围。  相似文献   

7.
温度和盐度对褐牙鲆幼鱼渗透生理及抗氧化水平的影响   总被引:1,自引:0,他引:1  
采用双因素析因实验设计方法,研究了温度(20℃、24℃、28℃)和盐度(10‰、30‰)急性应激对褐牙鲆(Paralichthys olivaceus)幼鱼渗透生理和抗氧化水平的影响。结果表明:盐度和温度变化对各实验组1d和6d时褐牙鲆幼鱼血浆皮质醇含量均无显著性差异。在高温低盐(28℃、10‰)环境中1d时渗透压显著高于其他各实验组,6d时无显著性差异。牙鲆幼鱼在28℃环境中1d时鳃Na+-K+-ATP酶活性显著高于20℃和24℃;6d时,温度和盐度对牙鲆幼鱼鳃Na+-K+-ATP酶活性有显著交互影响作用。1d时,随着温度的升高或盐度的降低牙鲆幼鱼肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈现上升趋势,并且高温低盐(28℃、盐度10‰)组褐牙鲆幼鱼肝脏丙二醛(MDA)含量显著高于其他各组;在3个实验温度下,10‰环境中牙鲆幼鱼肝脏脂质过氧化物(LPO)的含量高于30‰。在6d时,各实验组间肝脏SOD、CAT活性及MDA含量无显著性差异。因此,褐牙鲆能够耐受温度20—28℃和低至盐度10‰的环境条件,应激早期温度和盐度的变化可引起褐牙鲆幼鱼渗透生理和抗氧化水平的变化,高温低盐对褐牙鲆幼鱼抗氧化水平的影响最大,至6d可基本恢复稳定。  相似文献   

8.
&#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(1):58-67
采用双因素析因实验设计方法,研究了温度(20℃、24℃、28℃)和盐度(10、30)急性应激对褐牙鲆(Paralichthys olivaceus)幼鱼渗透生理和抗氧化水平的影响。结果表明:盐度和温度变化对各实验组1d和6d时褐牙鲆幼鱼血浆皮质醇含量均无显著性差异。在高温低盐(28℃、10)环境中1d时渗透压显著高于其他各实验组,6d时无显著性差异。牙鲆幼鱼在28℃环境中1d时鳃Na+-K+-ATP酶活性显著高于20℃和24℃;6d时,温度和盐度对牙鲆幼鱼鳃Na+-K+-ATP酶活性有显著交互影响作用。1d时,随着温度的升高或盐度的降低牙鲆幼鱼肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈现上升趋势,并且高温低盐(28℃、盐度10)组褐牙鲆幼鱼肝脏丙二醛(MDA)含量显著高于其他各组;在3个实验温度下,10环境中牙鲆幼鱼肝脏脂质过氧化物(LPO)的含量高于30。在6d时,各实验组间肝脏SOD、CAT活性及MDA含量无显著性差异。因此,褐牙鲆能够耐受温度2028℃和低至盐度10的环境条件,应激早期温度和盐度的变化可引起褐牙鲆幼鱼渗透生理和抗氧化水平的变化,高温低盐对褐牙鲆幼鱼抗氧化水平的影响最大,至6d可基本恢复稳定。    相似文献   

9.
盐度对卵形鲳鲹幼鱼渗透压调节和饥饿失重的影响   总被引:1,自引:0,他引:1  
区又君  范春燕  李加儿  于娜 《生态学报》2014,34(24):7436-7443
为探讨盐度对卵形鲳鲹(Trachinotus ovatus)渗透压调节的影响,研究了深水网箱养殖的卵形鲳鲹幼鱼鳃Na+-K+-ATP酶(NKA)活性,血浆、鳃和肾渗透压以及饥饿失重在盐度渐变条件下的反应。实验设5个盐度梯度组,分别为5、15、25、30和35。结果显示,鳃NKA活性除盐度15外都呈先下降后升高随之回落并趋于稳定的趋势,在2 d后的各时间节点随盐度变化呈"U"型分布;血浆渗透压在相同盐度下随时间延长呈先升高后下降再升高随后回落并趋于稳定,2 d后在各时间节点与盐度呈正相关关系,盐度30和35组的血浆渗透压显著高于其它盐度组(P0.05);肾脏对盐度变化的渗透调节比鳃敏感,在低盐度时(30以下),鰓和肾共同完成对渗透压的调节,在较高盐度(30以上),肾对渗透压的调节起主导作用。盐度变化对卵形鲳鲹的饥饿失重率有极显著的影响。研究表明,卵形鲳鲹幼鱼对盐度的渗透调节能力较强,在盐度5—35范围内的盐度变化均能适应,一般在1—2 d内可达到稳定,且更适于在低盐度水环境中生活。  相似文献   

10.
通过盐度渐变和温度骤变的方法,分别研究了不同盐度(10、20、30、40)处理和不同温度(18.0℃、21.0℃、24.6℃、29.0℃、32.0℃)处理对卵形鲳鲹(Trachinotus ovatus)选育群体肝超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)活力的影响.在实验结束时,盐度10组酶活力与对照组无显著差异(P>0.05),盐度20组SOD活力极显著低于对照组(P<0.01);盐度40组120 h时,SOD和GPX活力极显著低于对照组(P<0.01),CAT活力与对照组差异不显著(P>0.05).18.0℃和21.0℃ SOD活力在1、3、6、12、24 h这5个取样时间点均高于对照组,CAT活力在实验结束时(24 h)极显著高于对照组(P <0.01);29.0℃SOD和CAT活力在实验结束时(24 h)显著高于对照组(P<0.05);32.0℃ SOD和CAT活力在5个取样时间点均显著低于对照组(P<0.05).结果表明,适当的盐度或温度变化可以改变卵形鲳鲹肝抗氧化酶活力,达到机体耐受极限时酶活力下降.  相似文献   

11.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   

12.
I Jang  K Jung  J Cho 《Experimental Animals》1998,47(4):247-252
The present study was designed to determine age-related changes in intestinal and hepatic antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione-S-transferase (GST), and lipid peroxidation in male Wistar rats (n = 8) aged 2 wk, 2.5 mon, 5 mon, 10 mon, and 23 mon. In the small intestine, cytosolic SOD, GSH-PX activities and lipid peroxidation were not affected by age, but intestinal GST activity was noticeably enhanced as age increased. In particular, intestinal GST activity in 23 mon old rats was 3 times as strong as that in 2 wk old rats. In the liver, the activity of hepatic cytosolic SOD was not affected by age, whereas GSH-PX and GST activities in rats aged 10 mon and 23 mon were much stronger than those in rats aged 2 wk, 2.5 mon, and 5 mon. The increased lipid peroxidation in 2.5 mon and 5 mon old rats was observed when compared with that of other groups. It is therefore concluded from the results presented here that age greatly increases GST activity in the small intestinal mucosae and increasing GSH-PX, GST activities and lipid peroxidation in the liver from male Wistar rats.  相似文献   

13.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

14.
铜对梨形环棱螺抗氧化酶活性和金属硫蛋白含量的影响   总被引:2,自引:1,他引:1  
本实验采用暴露重金属的方法,研究了不同浓度硫酸铜(Cu2+ 分别为0、0.005、0.01、0.02、0.05 mg/L)在不同暴露时间(0—14d)下对梨形环棱螺(Bellamya purificata)过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽硫转移酶(GST)的活性、还原性谷胱甘肽(GSH)和金属硫蛋白(MT)含量的影响,以探讨Cu2+ 对梨形环棱螺的氧化损伤及其防御作用的机理,并为水环境Cu2+ 污染的早期诊断及生态风险评价提供科学的依据。结果表明:Cu2+对梨形环棱螺肝脏和鳃中CAT、SOD、GST、GSH 和MT 均有明显影响,表现出时间剂量效应。SOD在前4天、CAT在前3天酶活性总体上表现出诱导趋势, GST在前4天酶活性处于诱导状态,随着暴露时间的延长,酶活性下降,到第5天时表现出抑制趋势;随着时间的进一步增长,至14d时, 0.005 mg/L剂量组酶活性维持在正常值附近波动, 0.01 mg/L剂量组酶活性被诱导, 0.02 mg/L剂量组酶活性在肝脏中表现为诱导而在鳃中则被抑制,0.05 mg/L剂量组酶活性被抑制。肝脏和鳃GSH含量的变化与GST相似,在短时间内表现出诱导效应,肝脏GSH在暴露的前5天、鳃GSH在暴露的前4天均处于诱导状态,随着暴露时间的延长,0.005 mg/L剂量组表现出诱导,0.05 mg/L剂量组则受到抑制。MT在整个实验期间均处于诱导状态,各剂量组在0.5d被极显著诱导,随后MT含量出现起伏波动,有上升和下降,至第14天时达到一稳定水平。其中,0.01 mg/L剂量组肝脏的MT在整个实验期间均被极显著地诱导(P <0.01),0.01 mg/L 剂量组的鳃组织MT除第10天外也被极显著诱导(P <0.01)。在暴露14d时,除0.05 mg/L剂量组的肝脏MT外,其余处于极显著诱导状态(P <0.01)。  相似文献   

15.
Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required.  相似文献   

16.
Activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glucose-6-phophate dehydrogenase (G6PDH) were measured in four tissues of goldfish, Carassius auratus L., over 1-12 h of high temperature (35 degrees C) exposure followed by 4 or 24 h of lower temperature (21 degrees C) recovery. SOD activity was strongly affected by heat shock, increasing 4-fold in brain, liver, and kidney, but was mainly reversed at recovery. In some tissues, activities of SOD, catalase, GPx, and G6PDH decreased significantly after 1 h heat shock exposure suggesting that thermal inactivation possibly occurred, but were renewed at further exposure. In many cases, 4 h of return to the initial temperature decreased enzyme activities. High correlation coefficients between SOD activities and levels of lipid peroxidation products suggest that these products might be involved in up-regulation of antioxidant defense. Several enzymes (SOD, GST, GR) responded to stress in coordinated manner.  相似文献   

17.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

18.
The activities of antioxidant defence enzymes — total, manganese and copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) — in the liver of longfin gurnard (Chelidonichthys obscurus) from the Montenegrin coastline (Adriatic sea) were investigated. The specimens were collected in winter (February) and late spring (May) at two localities: Platamuni (PL, potentially unpolluted) and the Estuary of the River Bojana (EB, potentially polluted). The obtained results show that the activities of Mn SOD, CAT, GSH-Px and GST in winter were significantly lower at EB than at PL. In spring, the activities of CAT and GST were decreased, while GR activity was increased at EB in comparison to PL. The activities of Mn SOD and GST at PL were decreased and GSH-Px, GR and GST activities at EB were increased in spring compared to winter. Our work represents the first study of liver antioxidant enzymes of longfin gurnard from the Montenegrin coastline and reveals that locality, as a variable, has a greater influence on antioxidant enzymes and biotransformation phase II enzyme GST activities compared to season.  相似文献   

19.
Anti-oxidative enzymes play a role in protecting cells from oxidative stress-induced cell death. The present study was conducted to evaluate whether the anti-oxidant and pro-oxidant enzymatic capacities of the sheep corpus luteum (CL) are correlated with steroidogenic and structural status of the gland during the estrous cycle. Steroidogenic activity, apoptosis and superoxide dismutase (SOD1 and SOD2), nitric oxide synthase (NOS), glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferase (GST) activities were determined in the CL at specific developmental stages of the luteal phase. The intensity of apoptotic DNA fragmentation, characteristic of physiological cell death, was much greater in CL at late luteal phase than at early and mid-luteal phase, concomitantly with the diminution in the plasma progesterone concentrations from mid-to late luteal phase. SOD1 and GPX activities increased from early to mid-luteal phase, and increased further at late luteal phase. SOD2 and GST activities were not different between early and mid-luteal phase, but increased at late luteal phase. GSR activity was not different between any luteal phase examined. NOS activity decreased from early to mid- and late luteal phase. These results show that the activities of SOD1, SOD2, NOS, GPX, GSR and GST in the sheep CL are subject to major changes during the estrous cycle, and that the anti-oxidant and pro-oxidant enzymatic capacities of luteal cells are not correlated with cell steroidogenic status and integrity during the late luteal phase.  相似文献   

20.
Myocardial activity and gene expression of antioxidant defenses and oxidative damage were examined in an experimental model of pressure overload hypertrophy. Male Wistar rats were divided into abdominal aortic-banded or sham-operated groups. After 30 days, arterial pressure and heart rate were measured. Heart, lung, and liver were extracted and weighted to evaluate cardiac hypertrophy and pulmonary and hepatic congestion. Heart homogenates were prepared to quantify lipid peroxidation (LPO); the activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR); and Cu-Zn SOD and GST concentrations. Total glutathione (GSH) myocardial content was also measured. Arterial pressure (142 +/- 17 mmHg) and cardiac hypertrophy index (3.4 +/- 0.45 mg/g) were significantly increased (by 38% and 22%, respectively, p<0.0001) in the aortic-banded group. LPO was enhanced by 55% in the aortic-banded group (11891 +/- 766 cps/mg protein, p<0.001) compared with that in the controls. SOD activity and concentration were higher (40% and 38%, 15.15 +/- 1.03 U/mg protein, 49.187 pixels, respectively, p<0.05) in the aortic-banded group than in the controls. Aortic-banding induced a decrease by 28% in GST (48 +/- 10 pmol/min/mg protein, p<0.005), by 36% in GPx (38.2 +/- 9.5 nmol/min/mg protein, p<0.005), by 31% in GR activities (1.55 +/- 0.23 nmol/mg protein, p<0.0005), and by 43% in GSH content (0.13 +/- 0.02 nmol/mg protein, p<0.005). In conclusion, in this model it was observed that myocardial oxidative stress induces alterations in antioxidant enzyme activities and protein expression. The follow up of these parameters could afford an early therapeutical window to avoid heart failure progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号