首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine natural products have displayed numerous advantageous effects on biological activities, including antioxidants and cytotoxicity. The total lipids, carotenoids, chlorophyll a and b content, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of methanolic crude extract of the green seaweed Halimeda opuntia were all measured in this study. The TPC of the extracts was determined according to the Folin-Ciocalteu method, yielding a result of 55.04 ± 0.98 mg GAE/g of extract. As determined by the aluminium chloride colorimetric method, the TFC of the extract was 40.02 ± 0.02 mg QE/g of extract. Antioxidant activity was determined by using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with different concentrations that ranged between 200 and 1000 µg/mL, noted H. opuntia as the highest in DPPH reduction (63.61 %) at 1000 µg/mL concentration. Total antioxidant capacity (TAC) of the extract was 57.36 ± 0.004 mg AAE/g extract at concentration of 1.0 mg/mL. The cytotoxic activity of this seaweed was pre-screened against a panel of cell lines including estrogen receptor-positive human breast adenocarcinoma (MCF-7), estrogen negative human breast adenocarcinoma (MDA-MB-231), human colorectal adenocarcinoma (HT-29), human hepatocellular carcinoma (HepG2), and mouse embryonic fibroblast (3T3) using the MTT assay. The content of total lipids in H. opuntia was 1.60 ± 0.002 %. Total carotenoids were 115.57 ± 0.98 µg/g, while chlorophyll a and b were 148.73 ± 2.60 µg/g and 290.83 ± 9.46 µg/g, respectively. In terms of cytotoxicity activity, methanolic extract of H. opuntia was found to be highly cytotoxic to MCF-7 cells, with an IC50 of 25.14 ± 1.02 g/mL, and slightly less so to 3T3 cells (IC50 65.23 ± 0.25 µg/mL). This study's findings suggest that natural pigments (carotenoids and chlorophyll), phytochemicals like phenolic and flavonoid compounds found in this species may play an important role and could be used as a natural cancer treatment.  相似文献   

2.
Medicinal plants have significant contribution in pharmaceutical industries being producers of compounds utilized as precursors for drug development. A plant of Lamiaceae family; Pseudocaryopteris foetida had not been investigated for its biomedical potential. Current research was aimed to investigate phytochemical analysis, cytotoxic potential and antioxidant activity of crude methanolic extract and fractions of Pseudocaryopteris foetida (leaves). The preliminary phytochemical analysis of crude methanolic extracts and fractions of Pseudocaryopteris foetida revealed that plant is rich in phenolic and flavonoid classes of secondary metabolites while presence of tannin was observed only in crude methanolic extract. The cytotoxicity was determined using brine shrimp lethality test. Different concentrations (25, 50, 100, 150, 200 and 250 µg/mL) of crude methanolic extract and fractions exhibited dose dependent cytotoxicity. However, The LD50 for all the extracts was more than 200 µg/mL indicating weak cytotoxic potential of Pseudocaryopteris foetida. The antioxidant capabilities of crude methanolic extract and fraction of Pseudocaryopteris foetida were analyzed by in vitro bio assays including DPPH, ABTS, Reducing power and phosphomolybdate antioxidant assays using ascorbic acid as standard. The crude methanolic extract showed IC50 (256.38 ± 0.6 and 314.95 ± 1.1 µg/mL) for DPPH and ABTS respectively, while total antioxidant capacity was calculated as 55.79 ± 0.5 µg/mL for crude methanolic extract of Pseudocaryopteris foetida while ascorbic acid indicated total antioxidant capacity of 71.89 ± 2.3 µg/mL. Study concluded that leaves of Pseudocaryopteris foetida were the rich source of antioxidant phytochemicals. Based on preliminary investigations further research should be focused to isolate bioactive phytochemicals as leading source of clinical medicines in future.  相似文献   

3.
Owing to extremely high salinity and harsh environmental conditions, T. articulata is one of the most abundant wild plants growing in the deserts of Saudi Arabia. Such plants may contain novel compounds to display promising biological activities. Here, in this study, we evaluate the biological activities of methanolic extracts of fresh leaves, dry leaves, stem, and roots of T. articulata. The antioxidant activity was determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and total phenolic and flavonoid content were determined using standard colorimetric methods. Whereas antimicrobial and ant-proliferative activities were determined by standard well-diffusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. Our results demonstrate that all methanolic extracts of T. articulata showed antioxidant activity, however, the methanolic extract of dry leaves exhibits promising antioxidant effect with IC₅₀ value 49.08 ± 1.98, which was strongly supported by total phenolic (409.92 ± 6.03 mg GAE/g DW) and flavonoid (177.71 mg QE/g DW) content. Although, antimicrobial activity was also exhibited by all the methanolic extracts, however, methanolic extract of dry leaves exhibits promising antimicrobial activity in Gram-positive bacteria Staphylococcus epidemidis. Furthermore, MTT assay revealed that all methanolic extracts exhibit antiproliferative activity in MCF-7 (breast cancer) and RKO (colorectal cancer) cells with IC₅₀ values ranges from 219 ± 5.112 µg/ml to 253 ± 5.231 µg/ml and 220 ± 4.330 µg/ml to 325 ± 6.213 µg/ml, respectively. However, the most promising antiproliferative effect was displayed by methanolic extract of dry leaves with IC₅₀ values 219 ± 5.112 µg/ml and 220 ± 4.330 µg/ml, respectively. In summary, these findings provide evidence that T. articulata has promising biological activities and can be used for many pharmaceutical activities in the future.  相似文献   

4.
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2′,3′-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.  相似文献   

5.
In the present study, some thiazole derivatives were synthesized via the ring closure reaction of 1-[2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetyl]thiosemicarbazide with various phenacyl bromides. The chemical structures of the compounds were elucidated by 1H NMR, 13C NMR and mass spectral data and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman’s spectrophotometric method. The compounds were also investigated for their cytotoxic properties using MTT assay. The most potent AChE inhibitor was found as compound 4e (IC50?=?25.5?±?2.12 µg/mL) followed by compounds 4i (IC50?=?38.50?±?2.12 µg/mL), 4c (IC50?=?58.42?±?3.14 µg/mL) and 4g (IC50?=?68?±?2.12 µg/mL) when compared with eserine (IC50?=?0.025?±?0.01 µg/mL). Effective compounds on AChE exhibited weak inhibition on BuChE (IC50 > 80 µg/mL). MTT assay indicated that the cytotoxic dose (IC50?=?71.67?±?7.63 µg/mL) of compound 4e was higher than its effective dose.  相似文献   

6.
《农业工程》2022,42(6):661-669
Dittrichia viscosa L., is a perennial plant belonging to the Asteraceae family, and this study was performed to investigate the chemical composition of its extract, using gas chromatography–mass spectrometry (GC–MS). Total phenol (TPC), flavonoid (TFC), and tannins contents (TTC), were quantified using colorimetric methods in two extracts (EtOH and ACE). The antioxidant activity was evaluated using DPPH scavenging, phosphomolebdenum test (TAC) and ferric reducing power assay (FRAP). The antimicrobial activity was determined against six nosocomial pathogens: Bacillus subtilis, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Candida albicans, Aspergillus niger, using disc diffusion method and microdilution assay. The ACE and EtOH extracts had similar TPC: 151.18 ± 1.57 and 127.09 ± 15,81 mg GAE/ g DW. TFC & TTC recorded were also closely matched. The chemical composition revealed the presence of 18 phytochemical compounds with a total of 99.91%, where trimethylsilyl-meso-inositol (20.54%) was the major compound, followed by 5(4H)-Thebenidinone (16.80%). Both extracts showed high radical scavenging activity with an IC50 equal to 12.54 ± 0.2 μg/mL for EtOH, and 7.84 ± 0.1 μg/mL for ACE in DPPH test. In the FRAP test, we recorded an EC50 of 6.37 ± 0,012 mg/mL for EtOH, and 6 ± 0.022 mg/mL for ACE. The ACE presented higher antioxidant capacity (253.52 ± 2.98 mg AAE/g) compared to EtOH (189.14 ± 4,86 mg AAE/g) in the TAC assay. The higher inhibition zone was observed on B. subtilus (13 ± 0.1 mm) for EtOH, and the ACE was more effective on S. enterica (13.3 ± 0.08 mm). All the microbial strains were sensitive for both extracts, with MICs ranging from 0.93 mg/mL to 15 mg/mL.  相似文献   

7.
The hydroalcoholic extract (MIT) of Micromeria imbricata (Forssk.) growing in Saudi Arabia in addition to the chloroform (MIC) and n-butanol (MIB) fractions were investigated for the first time using UPLC-ESI-MS/MS. The analysis revealed the tentative identification of fifty-eight compounds including three organic acids, twenty-five phenolic compounds, three coumarins, two anthocyanins, twenty-one flavonoids, three terpenes, and one miscellaneous. Moreover, the therapeutic potential of M. imbricata (MIT) and its fractions (MIC and MIB) were determined by in vitro evaluation of their cytotoxic, antioxidant, and anti-obesity characteristics. The MIT extract showed the highest phenolic (125.23 ± 0.87 mg gallic acid equivalent/100 gm extract) and flavonoid (112.24 ± 2.45 mg quercetin equivalent/100 gm extract) contents followed by n-butanol and chloroform fractions. The MIT extract revealed a potent cytotoxic activity against HepG-2 (Hepatocellular carcinoma) and MCF-7 (Breast carcinoma) with IC50 28.5 ± 2.0 and 35.2 ± 1.2 µg/mL, respectively. Additionally, the tested hydroalcoholic extract exhibited a significant DPPH scavenging activity with SC50 28.4 ± 1.2 µg/mL and a remarkable lipase inhibitory activity with IC50 54.2 ± 1.2 µg/mL. In conclusion, the current study presents the first insights into the phytochemical constituents and pharmacological properties of M. imbricata extract and its chloroform and n-butanol fractions. The results revealed that M. imbricata hydroalcoholic extract might be a prolific source of bioactive constituents with potent antioxidant, cytotoxic and anti-obesity potential. It might be a natural alternative therapy and nutritional strategy for obesity treatment.  相似文献   

8.
Curcuma aromatica (CA) is a herbaceous plant in the Zingiberaceae family. It has antioxidative activity and anti-inflammatory properties. The purpose of this study was to investigate the effect of solvents and extraction methods on CA rhizomes. The crude extracts were tested for phenolic and flavonoid contents, antioxidative activity by DPPH and lipid peroxidation assay, and protein denaturation inhibition. The crude extracts with 95% ethanol by maceration technique showed good results. It had phenolic content at 99.28 ± 1.09 mg GAE/g extract, flavonoid content at 397.00 ± 27.54 mg QE/g extract, antioxidative activity by DPPH assay and lipid peroxidation assay at IC50 value of 0.55 ± 0.02 mg/ml and 0.60 ± 0.10 mg/ml, respectively. The percentage of protein denaturation inhibition was 65.97 ± 4.68%. The crude extract with 95% ethanol by maceration technique was selected to formulate nanoemulsion. Nanoemulsion formulation consisted of DI water, Tween 80, CA extract, coconut oil and Span 80 at 72.50, 12.93, 7.07, 5.00 and 2.5%w/w, respectively. Its appearance was an opaque yellow liquid with no precipitation and no phase separation at room temperature. The particle size, pH, and viscosity were 70.20 ± 0.38 nm, 5.87 ± 0.01 and 3.56 ± 0.24 cP, respectively. Nanoemulsion loaded CA extract had bioactivities and highly stable characteristics after heating–cooling test for 6 cycles. This study has demonstrated the potential of nanoemulsion from coconut oil loaded CA extract for further development to novel cosmetic products.  相似文献   

9.
Jatropha integerrima Jacq. flower extract was used for the synthesis of silver nanoparticles in the current study. Various spectroscopic analyses were used to characterize the synthesized nanoparticles (JIF-AgNPs). The antibacterial efficacy of JIF-AgNPs was studied by well diffusion and microdilution techniques. In addition, the impact of JIF-AgNPs on free radicals was evaluated. On the ultraviolet–visible spectrum, the nanoparticles exhibit the highest absorbance at 422 nm. Based on the Fourier transform infrared spectrum, phenols and amino acids were involved in capping the JIF-AgNPs. Crystalline sphere-shaped nanoparticles with an average size of 50.07 nm and zeta potential of ?19.0 mV were confirmed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering analysis respectively. The JIF-AgNPs exhibit the highest and lowest growth inhibitory activity towards E. coli and B. subtilis. The minimal inhibitory concentration of JIF-AgNPs against E. coli, K. pneumoniae, S. aureus, and B. subtilis were 2.5, 5.0, 5.0, and 7.5 μg/mL, respectively. The JIF-AgNPs exhibited significant radical scavenging activities against DPPH (IC50-32.5 ± 0.06 µg/mL), hydroxyl (IC50-25 ± 0.09 µg/mL), Superoxide (IC50-42.5 ± 0.13 µg/mL), and ABTs (IC50-33.5 ± 0.15 µg/mL). Thus, synthesized nanoparticles were a good alternative to develop an antibacterial and antioxidant agent.  相似文献   

10.
Ceropegia thwaitesii Hook (Asclepiadaceae), an endemic plant species, due to habitat destruction and over exploitation has a very restricted distribution in the Western Ghats of Tamil Nadu, India. The present wrok aimed to determine the chemical composition, the total phenolic (TPC), flavonoid (TFC) and tannin content (TEC), and to assess the antioxidant properties of various extracts of in vivo plants (IVP) and in vitro regenerated plants (IRP) of C. thwaitesii. Some phenolic compounds like gallic acid, cathechol, vanillin and salicylic acid were identified and quantified by HPLC. All the extracts possessed relevant radical scavenging activity on DPPH, Superoxide radical scavenging activity, and Nitric oxide radicals as well as total antioxidant ability. DPPH assay of in vitro methanol stems extracts and ethanol leaves extracts revealed the best antioxidant properties with important IC50 values of 0.248?±?0.45?µg/mL and 0.397?±?0.67?µg/mL, respectively, whereas in vivo chloroform stems extracts showed a lower antioxidant activity (IC50 of 10.99?±?0.24?µg/mL). The IRP methanol extracts of stem and leaves had good inhibitory activity against all tested microorganisms in a dose-dependent manner. These results suggested that in vitro raised plants of C. thwaitesii are an excellent source of antioxidant compounds to be exploited on an industrial level as food additive.  相似文献   

11.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

12.
The study aimed to assess the proficiency of secondary metabolites (SMs) synthesized by actinobacteria isolated from the rhizospheric soil of Rauwolfia serpentina for its antimicrobial and anti-biofilm activity. After morphological and biochemical identification of actinobacteria, primary and secondary screening was done for specific metabolite production. The secondary metabolites were then tested for their antioxidant, antibacterial, and antibiofilm potential. Out of 29 bacterial colonies isolated, only one emerged as a novel isolate, Microbacterium LA2(R). Partial 16S rRNA gene sequence of the isolate LA2(R) was deposited in NCBI GenBank with accession number MN560041. The highest antioxidant capacity of the methanolic extract the novel isolate was found to be 474.183 µL AAE/mL and 319.037 µL AAE/mL by DPPH assay and ABTS assay respectively; three folds higher than the control. These results were further supported by the high total phenolic (194.95 gallic acid equivalents/mL) and flavonoid contents (332.79 µL quercetin equivalents/mL) of the methanolic extract. GC–MS analysis revealed the abundance of antibacterial compounds; where, n-Hexadecanoic acid was found to be the major compound present with a peak of 14 min retention time (RT) and 95% similarity index. MIC value of the metabolite was noted to be around 132.28 ± 84.48 μg/mL. The IC50 value was found to be 74.37, 71.33, 66.28 and 84.48 μg/mL against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Salmonella abony, respectively. Treatment with IC50 of the extract decreased the biofilm formation up to 70%–80% against pathogenic strains viz. Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Salmonella abony. These significant activities of Microbacterium sp. LA2(R) suggests that it could be utilized for antibiotic production for human welfare and in various important industrial applications.  相似文献   

13.
In this study, the phytochemical, phenolic, flavonoid and bioactive compounds were successfully screened from crude extract of Sargassum wightii by LC-MS analysis after NIST interpretation. Bacterial growth inhibition study result was shown with 24 mm zone inhibition at 200 µg/mL concentration against P. aeruginosa. The increased phenolic content was much closed to gallic acid and the range was observed at 250 μg/mL concentration. In addition, flavonoid contents of the algae extract was indicated more significant with rutin at 200 μg/mL. In result, both the phenolic and flavonoid contents of the extract were more correlated with gallic acid and rutin. Further, the total anti-oxidant and DPPH radical scavenging activities were shown increased activity at 200 μg/mL concentrations. Furthermore, the excellent anti-bacterial alteration result was observed at 200 μg/mL concentration by minimum inhibition concentration. Therefore, the result was revealed that the marine algae Sargassum wightii has excellent phytochemical and anti-oxidant activities, and it has improved anti-bacterial activity against P. aeruginosa.  相似文献   

14.
BackgroundThe present investigation aims to determine the chemical structure and protoscolicidal effects of Elettaria cardamomum L. essential oil (ECEO) and its main compounds 1–8 cineole alone and along with albendazole (ALZ) against Echinococcus granulosus protoscoleces in vitro and ex vivo. We also decided to evaluate some cellular mechanisms such as the apoptotic activity and the permeability of plasma membrane of protoscoleces treated with ECEO and 1–8 cineole.MethodsHydatid cyst protoscoleces were divided into seven groups including protoscoleces treated with ECEO 50 µl/mL (T1), protoscoleces treated with ECEO 100 µl/mL (T2), protoscoleces treated with ECEO 200 µl/mL (T3), protoscoleces treated with 1–8 cineole 100 µg/mL (T4), protoscoleces treated with 1–8 cineole 200 µg/mL (T5), protoscoleces treated with 1–8 cineole 100 µg/mL + albendazole 50 µg/mL (T6), and protoscoleces treated with 1–8 cineole 200 µg/mL + albendazole ALZ-50 µg/mL (T7). The viability of protoscoleces were recorded by eosin staining examination. Moreover, the induction of apoptosis and the plasma membrane permeability of the protoscoleces treated with ECEO and 1–8 cineole were evaluated.ResultsThe highest protoscolicidal effect of ECEO was observed at the dose of 200 µl/ml (T3). 1,8-Cineole alone and combined with ALZ, particularly at the dose of 200 µg/ml (T5 and T7), destroyed the 100% protoscolices after 10 min incubation. The ECEO (T1-T3) and 1–8 cineole alone (T4 and T5) and in combination with ALZ (T6 and T7) took longer to display their protoscolicidal effect ex vivo. The obtained results of relative fuorescent items exhibited that the protoscoleces incubated with ECEO and 1,8-Cineole, alter the permeability of plasma membrane by Sytox Green with increasing the concentration. The findings revealed exhibited that ECEO and 1,8-Cineole increasingly and dose-dependently induced activation of caspase-3 enzyme ranging from 6.8 to 23.3%.ConclusionOur obtained results revealed that ECEO and its main compound, 1,8-Cineole exhibited the potent protoscolicidal in vitro and ex vivo; and if more research is done on their efficacy and toxicity in animal models and even clinical setting, it can be suggested as a protoscolicidal agent to use during hydatid cyst surgery.  相似文献   

15.
A new series of quinazolinone derivatives containing triazole, thiadiazole, thiosemicarbazide functionalities was synthesized and then screened for their in vitro urease inhibition properties. Most of the compounds showed excellent activity with IC50 values ranging between 1.88 ± 0.17 and 6.42 ± 0.23 µg/mL, compared to that of thiourea (IC50 = 15.06 ± 0.68) and acetohydroxamic acid (IC50 = 21.03 ± 0.94), as reference inhibitors. Among the synthesized molecules, compounds 5c, 5e and 5a showed the best inhibitory effect against urease enzyme with IC50 values of 1.88 ± 0.17 µg/mL, 1.90 ± 0.10 and 1.96 ± 0.07 µg/mL, respectively. Moreover in order to give better understanding of the inhibitory activity of synthesized compounds, molecular docking studies were applied at the target sites of jack bean urease enzyme (JBU). Their binding poses and energy calculations were analyzed using induced fit docking (IFD) and prime-MMGBSA tool. Binding poses of studied compounds were determined using induced fit docking (IFD) algorithms.  相似文献   

16.
Present work elucidates the antioxidant and antibacterial activity of Woodwardia unigemmata (Makino) Nakai along with chemical characterization using its aqueous (AEW), methanol (MEW), and hexane (HEW) extracts. Chemical profile of different extracts was illustrated by using Gas chromatography and mass spectrometry (GC-MS) analysis. Antioxidant activities were tested using DPPH and FRAP assays, total phenolic and flavonoid content by Folin-Ciocalteu and aluminum chloride method, respectively. Further, antibacterial activity against six plant and four animal pathogenic bacteria was analyzed by employing the disc diffusion assay. GC-MS analysis revealed the presence of catechol (21.96%), glycerol (20.22%), n-pentadecanoic acid (6.95%), glyceryl monoacetate (6.35 %), ethyl acetimidate (5.39 %) and 3-hydroxy-2,3-dihydromaltol (5.36%) in AEW; β-sitosterol (17.39%), pentadecanoic acid (9.81%), vitamin E (7.82%) and glycerol (7.05%) in MEW; γ-sitosterol (33.45%), vitamin E (10.04%) and campesterol (7.32%) in HEW as major constituents. Maximum phenolics (873 ± 6.01 mgGAE/g dry extract) as well as flavonoids (151 ± 11.44 mgQE/g dry extract) content was found in MEW, which also showed remarkable antioxidant potential (IC50 6.07 ± 1.4 µg/ml for DPPH and 768 ± 10.4 mg AAE/g dry extract for FRAP assay. In antibacterial activity, maximum inhibition (15 ± 0.9 mm) was observed for HEW against R. solanacearum, followed by AEW against A. tumefaciens and X. phaseoli (11 ± 0.3 mm each). MEW was found positive only against A. tumefaciens. Significant minimum inhibitory concentration (MIC) value observed for AEW against L. monocytogenes (10 mg/ml). Polar extracts had remarkable antioxidant potential, while non-polar extract did show significant antibacterial activity. Further, GC- MS reports indicated that this traditionally useful fern species can be an excellent source of biologically active compounds.  相似文献   

17.
Luffa echinata Roxb. is one of the neglected medicinal plants. It is an important source of bioactive metabolites and used in several Ayurvedic formulations. In the present analysis, mature leaves and fruits were extracted with acetone, ethanol, acetonitrile, methanol and water. Phytochemicals like total phenolic (TPC), flavonoid (TFC), tannin (TTC), alkaloid (TAC) and terpenoid (TTEC) content were analysed. Further, antioxidant (AOX) activities like 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis-(3-ethyl) benzothiazoline-6-sulfonic acid (ABTS) radical scavenging, metal chelating activity (MC), ferric reducing antioxidant power (FRAP) and phosphomolybdenum assay (PMA) were studied. Highest TPC and TFC (189.57 ± 1.9 mg TAE/g extract, 30.48 ± 0.7 mg CE/g extract, respectively) were reported from acetone extract of the leaves. Ethanolic fruit extract showed the highest TTC (13.79 ± 0.2 mg CE/g extract). Acetone and acetonitrile fruit extract revealed maximum TTEC (602.79 ± 3.5 mg UAE/g extract) and moderate TAC (19.96 ± 0.9 mg GE/g extract), respectively. In AOX, highest DPPH (50.52 ± 0.03 mg AAE/g extract) and ABTS (26.78 ± 0.03 mg TE/g extract) radical scavenging reported in methanolic extract of fruit; however, acetone extract of leaf showed highest FRAP (376.89 ± 1.95 mg Fe(II)/g extract) and PMA (326.54 ± 4.73 mg AAE/g extract). In contrast, aqueous extract of leaf and fruit revealed highest metal chelating activity (41.67 ± 0.49 mg EDTA/g extract). In anti-diabetic studies, acetonitrile extract of leaves and fruits exhibited appreciable inhibition of α-amylase (83.33%) and α-glycosidase (77.42%) enzymes. Similarly, acetyl cholinesterase (AChE) inhibition was highest in water (88.91%) and acetone (81.87%) extracts of leaf and fruits. Fruit extracts showed potent anticancer activity against breast (MCF-7) and colon (HT-29) cancer cell lines (LC50 329.36 and 385.17 µg/mL, respectively). RP-HPLC analysis revealed highest cucurbitacin B (CuB) (196.24 ± 1.4 mg/g DW), followed by cucurbitacin I (CuI) and cucurbitacin E (CuE) in the fruits (57.14 ± 4.9 and 2.03 ± 0.03 mg/g DW, respectively). RP-HPLC analysis of extracts revealed presence of gallic acid (GA), catechin (CA), vanillic acid (VA), chlorogenic acid (CHLA) and coumaric acid (COA), in which highest GA found in the fruits (1.26 ± 0.07 mg/g DW). Liquid chromatography and mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC–MS) analysis revealed presence of bioactive compounds from various groups. Based on the present findings, it was revealed that the fruit and leaf of L. echinata can be used as potent bioresource for natural antioxidants, anti-diabetic, and anticancer drug.  相似文献   

18.
Azima tetracantha, a traditional medicinal plant included in the order Brassicales and family Salvadoraceae, is widely used as a dietary supplement in folklore medicines. The plant is also used for the treatment of rheumatism, diarrhea and other inflammatory disorders. The present investigation focused on the phytochemical composition, radical scavenging, reducing potential and anti-proliferative activities of the A. tetracantha leaves. Quantitative estimation of the polyphenols and flavonoids revealed significantly elevated levels in the methanol extract. Corroborating with this, methanol extract exhibited higher in vitro anti-radical scavenging effect against 2,2-diphenyl-1- picrylhydrazyl (34.14 ± 2.19 μg/mL), and hydrogen peroxide (44.96 ± 1.77 μg/mL), as well as ferric reducing properties (58.24 ± 6.98 μg/mL). The methanolic extract also showed strong lipoxygenase (71.42 ± 6.36 μg/mL) and nitric oxide inhibitory activities (94.23 ± 8.11 μg/mL). Cytotoxic activity against MCF7 cells was found to be higher (IC50= 37.62 ± 2.94 μg/mL), than that of MDAMB231 cells (IC50= 69.11 ± 5.02 μg/mL). The qPCR-based analysis indicated dose-dependent increase in the expression of the pro-apoptotic genes such as executioner caspases and apoptotic protease activating factor-1. Overall, the results indicated the possible use of methanol extract of A. tetracantha leaves as a chain-breaking antioxidant molecule and are capable of inhibiting inflammatory enzymes and the proliferative potential of breast cancer cells.  相似文献   

19.
Screening of phytochemical Ephedra alte crude extract by GC–MS and HPLC analysis indicated the presence of alkaloids, tannins, flavonoids, terpenoids, and phenolic acid in the extract. The total phenolic content of E. alte methanol extract was 39.43 mg of Gallic acid eq/g, crude E. alte with 56.74, and 2.42 µg Trolox equivalent antioxidant capacity (TEAC)/g of plant extract according to DPPH and FRAP assay, respectively. The antimicrobial activity of E. alte against Staphylococcus aureus, staphylococcus epidermidis, Escherichia coli, and Klebsiellaoxytoca demonstrated a mean zone diameter of inhibition ranging from 0 to 17 mm. The MIC of the extracts ranged from 0.5 to 1.0 mg/mL. E. alte extract inhibits pepsin enzyme activity with IC50 values of 213.67 µg/ml. This study revealed that E. alte extract has pepsin enzyme inhibitory, antibacterial, antioxidant activities. The current outcomes indicate that E. alte might be employed as a natural agent for managing GERD and infectious diseases.  相似文献   

20.
Ten anthranilic amides bearing skeletons of chiral thioether and trifluoromethylpyridine (5a-5j) were designed and synthesized. Bioassays indicated that some of compounds had excellent insecticidal activity. For example, compounds 5a, 5e and 5g had the median lethal concentrations (LC50) against Plutella xylostella of 7.3, 8.7 and 8.1 µg/mL respectively. The LC50 of 5a against Ostrinia nubilalis and Pseudaletia separata were 21.7 and 44.2 µg/mL respectively. Anti-TMV tests indicated that some compounds also showed good antiviral activity. For instance, the curative activities of compounds 5b and 5e were 57.2% and 63.6%, and with half maximal effective concentration (EC50) of 304.5 and 203.0 µg/mL, respectively, which were much higher than these of ribavirin (39.4%, EC50 = 819.8 µg/mL) and ningnanmycin (56.2%, EC50 = 361.4 µg/mL). The molecular docking between the most active compounds and ryanodine receptor of the Plutella xylostella were also discussed. Those results indicated that the novel anthranilic amide derivatives in present work were worthy of further research and development as novel pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号