首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S. Kumar 《Genetics》1996,143(1):537-548
Maximum likelihood methods were used to study the differences in substitution rates among the four nucleotides and among different nucleotide sites in mitochondrial protein-coding genes of vertebrates. In the 1st+2nd codon position data, the frequency of nucleotide G is negatively correlated with evolutionary rates of genes, substitution rates vary substantially among sites, and the transition/transversion rate bias (R) is two to five times larger than that expected at random. Generally, largest transition biases and greatest differences in substitution rates among sites are found in the highly conserved genes. The 3rd positions in placental mammal genes exhibit strong nucleotide composition biases and the transitional rates exceed transversional rates by one to two orders of magnitude. Tamura-Nei and Hasegawa-Kishino-Yano models with gamma distributed variable rates among sites (gamma parameter, α) adequately describe the nucleotide substitution process in 1st+2nd position data. In these data, ignoring differences in substitution rates among sites leads to largest biases while estimating substitution rates. Kimura's two-parameter model with variable-rates among sites performs satisfactorily in likelihood estimation of R, α, and overall amount of evolution for 1st+2nd position data. It can also be used to estimate pairwise distances with appropriate values of α for a majority of genes.  相似文献   

2.
Using a general form of the directional mutation theory, this paper analyzes the effect of mutations in mutator genes on the G + C content of DNA, the frequency of substitution mutations, and evolutionary changes (cumulative mutations) under various degrees of selective constraints. Directional mutation theory predicts that when the mutational bias between A/T and G/C nucleotide pairs is equilibrated with the base composition of a neutral set of DNA nucleotides, the mutation frequency per gene will be much lower than the frequency immediately after the mutator mutation takes place. This prediction explains the wide variation of the DNA G + C content among unicellular organisms and possibly also the wide intragenomic heterogeneity of third codon positions for the genes of multicellular eukaryotes. The present analyses lead to several predictions that are not consistent with a number of the frequently held assumptions in the field of molecular evolution, including belief in a constant rate of evolution, symmetric branching of phylogenetic trees, the generality of higher mutation frequency for neutral sets of nucleotides, the notion that mutator mutations are generally deleterious because of their high mutation rates, and teleological explanations of DNA base composition. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

3.
Rates of nucleotide substitution for nuclear genes are thought to be governed primarily by the number of germ line replication events (the so-called "generation time" hypothesis). In contrast, rates of mitochondrial DNA evolution appear to be set primarily by DNA damage pathways of mutation mediated by mutagenic by-products of oxidative phosphorylation (the so-called "metabolic-rate" hypothesis). Comparison of synonymous substitution rates estimated for the mitochondrial cytochrome b gene and nuclear-encoded dlx, hsp70, and RAG-1 genes in mammals and sharks shows that rates of molecular evolution for sharks are approximately an order of magnitude slower than those for mammals for both nuclear and mitochondrial genes. In addition, there is significant positive covariation of substitution rate for mitochondrial and nuclear genes within sharks. These results, interpreted in light of the pervasiveness of DNA damage by mutagenic by-products of oxygen metabolism to both nuclear and mitochondrial genes and coupled with increasing evidence for cross-genome activity of DNA repair enzymes, suggest that molecular clocks for mitochondrial and nuclear genes may be set primarily by common mutational mechanisms.   相似文献   

4.
T J Crease 《Gene》1999,233(1-2):89-99
The sequence of the mitochondrial DNA (mtDNA) of the branchiopod crustacean Daphnia pulex has been completed. It is 15333bp with an A+T content of 62.3%, and contains the typical complement of 13 protein-coding, 22 transfer RNA (tRNA) and two ribosomal RNA (rRNA) genes. Comparison of this sequence with the sequences of the other eight completely sequenced arthropod mtDNAs showed that gene order and orientation are identical to that of Drosophila but different from Artemia due to the rearrangement of two tRNA genes. Nucleotide composition, codon usage, and amino acid composition are very similar in the crustaceans, but divergent from insects and chelicerates which show a much higher bias towards A+T. However, with few exceptions, the mitochondrial proteins of Daphnia are more similar to those of the dipteran insects (Drosophila and Anopheles) than to those of Artemia, at both the nucleotide and amino acid levels, suggesting that Artemia mtDNA is evolving at an accelerated rate. These results also show that sequence evolution and the evolution of nucleotide composition can be decoupled. Analysis of nucleotide substitution patterns in COII showed that there has been an unbiased acceleration of the overall substitution rate in Artemia. In contrast, the accelerated substitution rate in Apis is due partly to extreme A+T mutation pressure. Secondary structures are proposed for the Daphnia tRNAs and rRNAs. The tRNAs are similar to those of other arthropods but tend to have TPsiC arms that are only 4bp long. The rRNA secondary structures are similar to those proposed for insects except for the absence of a small number of helices in Daphnia. Phylogenetic analysis of second codon positions grouped Daphnia with Artemia, as expected, despite the latter's accelerated divergence rate. In contrast, the unusual pattern of mtDNA divergence in Apis led to a topology in which the holometabolous insects (Anopheles, Drosophila, Apis) appeared to be paraphyletic with respect to the hemimetabolous insect, Locusta, due to the early branching of Apis.  相似文献   

5.
Lobry JR  Sueoka N 《Genome biology》2002,3(10):research0058.1-research005814

Background

When there are no strand-specific biases in mutation and selection rates (that is, in the substitution rates) between the two strands of DNA, the average nucleotide composition is theoretically expected to be A = T and G = C within each strand. Deviations from these equalities are therefore evidence for an asymmetry in selection and/or mutation between the two strands. By focusing on weakly selected regions that could be oriented with respect to replication in 43 out of 51 completely sequenced bacterial chromosomes, we have been able to detect asymmetric directional mutation pressures.

Results

Most of the 43 chromosomes were found to be relatively enriched in G over C and T over A, and slightly depleted in G+C, in their weakly selected positions (intergenic regions and third codon positions) in the leading strand compared with the lagging strand. Deviations from A = T and G = C were highly correlated between third codon positions and intergenic regions, with a lower degree of deviation in intergenic regions, and were not correlated with overall genomic G+C content.

Conclusions

During the course of bacterial chromosome evolution, the effects of asymmetric directional mutation pressures are commonly observed in weakly selected positions. The degree of deviation from equality is highly variable among species, and within species is higher in third codon positions than in intergenic regions. The orientation of these effects is almost universal and is compatible in most cases with the hypothesis of an excess of cytosine deamination in the single-stranded state during DNA replication. However, the variation in G+C content between species is influenced by factors other than asymmetric mutation pressure.
  相似文献   

6.
The sequencing of the cloned Locusta migratoria mitochondrial genome has been completed. The sequence is 15,722 by in length and contains 75.3% A+T, the lowest value in any of the five insect mitochondrial sequences so far determined. The protein coding genes have a similar A+T content (74.1%) but are distinguished by a high cytosine content at the third codon position. The gene content and organization are the same as in Drosophila yakuba except for a rearrangement of the two tRNA genes tRNAlys and tRNAasp. The A+T-rich region has a lower A+T nucleotide content than in other insects, and this is largely due to the presence of two G+C-rich 155-bp repetitive sequences at the 5 end of this section and the beginning of the adjacent small rRNA gene. The sizes of the large and small rRNA genes are 1,314 and 827 bp, respectively, and both sequences can be folded to form secondary structures similar to those previously predicted for Drosophila. The tRNA genes have also been modeled and these show a strong resemblance to the dipteran tRNAs, all anticodons apparently being conserved between the two species. A comparison of the protein coding nucleotide sequences of the locust DNA with the homologous sequences of five other arthropods (Drosophila yakuba, Anopheles quadrimaculatus, Anopheles gambiae, Apis mellifera, and Artemia franciscana) was performed. The amino acid composition of the encoded proteins in Locusta is similar to that of Drosophila, with a Dayhoff distance twice that of the distance between the fruit fly and the mosquitoes. A phylogenetic analysis revealed the locust genes to be more similar to those of the Dipterans than to those of the honeybee at both the nucleotide and amino acid levels. A comparative analysis of tRNA orders, using crustacean mtDNAs as outgroups, supported this. This high level of divergence in the Apis genome has been noted elsewhere and is possibly an effect of directional mutation pressure having resulted in an accelerated pattern of sequence evolution. If the general assumption that the Holometabola are monophyletic holds, then these results emphasize the difficulties of reconstructing phylogenies that include lineages with variable substitution rates and base composition biases. The need to exercise caution in using information about tRNA gene orders in phylogenetic analysis is also illustrated. However, if the honeybee sequence is excluded, the correspondence between the other five arthropod sequences supports the findings of previous studies which have endorsed the use of mtDNA sequences for studies of phylogeny at deep levels of taxonomy when mutation rates are equivalent. Correspondence to: P.K. Flook  相似文献   

7.
We present a new approach for analyzing directional mutation pressure and nucleotide content in protein-coding genes. Directional mutation pressure, the heterogeneity in the likelihood of different nucleotide substitutions, is used to explain the increasing or decreasing guanine-cytosine content (GC%) in DNA and is represented by µD, in agreement with Sueoka (1962, Proc Natl Acad Sci USA 48:582–592). The new method uses simulation to facilitate identification of significant A + T or G + C pressure as well as the comparison of directional mutation pressure among genes, even when they are translated by different genetic codes. We use the method to analyze the evolution of directional mutation pressure and nucleotide content of mitochondrial cytochrome b genes. Results from a survey of 110 taxa indicate that the cytochrome b genes of most taxa are subjected to significant directional mutation pressure and that the gene is subject to A + T pressure in most cases. Only in the anseriform bird Cairina moschata is the cytochrome b gene subject to significant G + C pressure. The GC% at nonsynonymous codon sites decreases proportionately with increasing A + T pressure, and with a slope less than one, indicating a presence of selective constraints. The cytochrome b genes of insects, nematodes, and eumycotes are subject to extreme A + T pressures (µD = 0.123, 0.224, and 0.130) and, in parallel, the GC% of the nonsynonymous codon sites has decreased from about 0.44 in organisms that are not subjected to A + T or G + C pressure to about 0.332, 0.323, and 0.367, respectively. The distribution of taxa according to the GC% at nonsynonymous codon sites and directional mutation pressure supports the notion that variation in these parameters is a phylogenetic component.  相似文献   

8.
Hua J  Smith DR  Borza T  Lee RW 《Protist》2012,163(1):105-115
Levels of nucleotide substitution at silent sites in organelle versus nuclear DNAs have been used to estimate relative mutation rates among these compartments and explain lineage-specific features of genome evolution. Synonymous substitution divergence values in animals suggest that the rate of mutation in the mitochondrial DNA is 10-50 times higher than that of the nuclear DNA, whereas overall data for most seed plants support relative mutation rates in mitochondrial, plastid, and nuclear DNAs of 1:3:10. Little is known about relative mutation rates in green algae, as substitution rate data is limited to only the mitochondrial and nuclear genomes of the chlorophyte Chlamydomonas. Here, we measure silent-site substitution rates in the plastid DNA of Chlamydomonas and the three genetic compartments of the streptophyte green alga Mesostigma. In contrast to the situation in animals and land plants, our results support similar relative mutation rates among the three genetic compartments of both Chlamydomonas and Mesostigma. These data are discussed in relation to published intra-species genetic diversity data for the three genetic compartments of Chlamydomonas and are ultimately used to address contemporary hypotheses on the organelle genome evolution. To guide future work, we describe evolutionary divergence data of all publically available Mesostigma viride strains and identify, for the first time, three distinct lineages of Mesostigma.  相似文献   

9.
The nucleotide sequences of a segment of mitochondrial DNA (mtDNA) have been determined for nine species or subspecies of the subgenus Drosophila of the genus Drosophila. This segment contains two complete protein-coding genes (i.e., NADH dehydrogenase subunit 1 and cytochrome b) and a transfer RNA gene (tRNA(ser)). The G+C content at third-codon positions for the two protein-coding genes was 1.5 times higher than that in the D. melanogaster species group, which belongs to the subgenus Sophophora. However, there was a substantial difference between the nucleotide frequencies of G and C. The number of nucleotide substitutions per silent site was more than three times higher than that for nuclear DNA, although it was only 60% of that for mammalian mtDNA. Both parametric and nonparametric analyses revealed a strong transition-transversion bias in nucleotide substitution, as was observed in mammalian mtDNA. Moreover, the rate of substitution of A and T for G and C is higher than that for the opposite direction. This bias seems to be responsible for the extremely A+T-rich base composition of Drosophila mtDNA. It is also noted that the rate of transitional change between A and G is higher than that between T and C.  相似文献   

10.
11.
It has been known that in noncoding regions of the chloroplast genome, the pattern of nucleotide substitution is influenced by the two nucleotides flanking the substitution site. In a GC-rich environment, a bias toward transition was observed, whereas in an AT-rich environment, a bias toward transversion was observed. In this study, the influence of the two adjacent neighbors on the substitution pattern was observed in the first intron of the mitochondrial nad4 gene, although the AT content of this intron is only 48%. The proportion of transversions increases from 0.32 to 0.75 as the A + T content (number of A's + T's) of the two nearest neighbors increases from 0 to 2. This trend was also observed in another mitochondrial group I intron with an AT content of 64%. In addition, a similar, though weaker, effect was observed in vertebrate pseudogenes. So this effect is present in all three types of genomes. Furthermore, in contrast to the situation in the noncoding regions of chloroplast DNA, where most nucleotide substitutions occurred in the categories with an A + T content of either 1 or 2, nucleotide substitutions in the mitochondrial first nad4 intron occurred more evenly in three categories of different A + T contents. This might be due largely to the difference in the AT content (0.48 vs. 0.72) between the mitochondrial first nad4 intron and the chloroplast DNA regions studied.  相似文献   

12.
Summary Selective constraints on DNA sequence change were incorporated into a model of DNA divergence by restricting substitutions to a subset of nucleotide positions. A simple model showed that both mutation rate and the fraction of nucleotide positions free to vary are strong determinants of DNA divergence over time.When divergence between two species approaches the fraction of positions free to vary, standard methods that correct for multiple mutations yield severe underestimates of the number of substitutions per site. A modified method appropriate for use with DNA sequence, restriction site, or thermal renaturation data is derived taking this fraction into account. The model also showed that the ratio of divergence in two gene classes (e.g., nuclear and mitochondrial) may vary widely over time even if the ratio of mutation rates remains constant.DNA sequence divergence data are used increasingly to detect differences in rates of molecular evolution. Often, variation in divergence rate is assumed to represent variation in mutation rate. The present model suggests that differing divergence rates among comparisons (either among gene classes or taxa) should be interpreted cautiously. Differences in the fraction of nucleotide positions free to vary can serve as an important alternative hypothesis to explain differences in DNA divergence rates.  相似文献   

13.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

14.
More than an order of magnitude difference in substitution rate exists among sites within hypervariable region 1 of the control region of human mitochondrial DNA. A two-rate Poisson mixture and a negative binomial distribution are used to describe the distribution of the inferred number of changes per nucleotide site in this region. When three data sets are pooled, however, the two-rate model cannot explain the data. The negative binomial distribution always fits, suggesting that substitution rates are approximately gamma distributed among sites. Simulations presented here provide support for the use of a biased, yet commonly employed, method of examining rate variation. The use of parsimony in the method to infer the number of changes at each site introduces systematic errors into the analysis. These errors preclude an unbiased quantification of variation in substitution rate but make the method conservative overall. The method can be used to distinguish sites with highly elevated rates, and 29 such sites are identified in hypervariable region 1. Variation does not appear to be clustered within this region. Simulations show that biases in rates of substitution among nucleotides and non-uniform base composition can mimic the effects of variation in rate among sites. However, these factors contribute little to the levels of rate variation observed in hypervariable region 1.  相似文献   

15.
The evolution of DNA base composition evolution is simplified to a six-parameter model when there are no strand biases for mutation and selection. We analyzed the dynamics of this model with special attention to the influence of a change in substitution rates. The G + C content of the DNA sequence tends to an equilibrium value that is controlled by four parameters of the model. When the substitution rates are not constant, the G + C equilibrium position is not constant. The DNA sequence base frequencies always tend to a state in which A = T and G = C within a strand, regardless of substitution rates. This is true even when the substitution rates are not constant over time. This provides a simple way of rejecting the model from inspection of present-day DNA base composition.  相似文献   

16.
Directional mutation pressure,selective constraints,and genetic equilibria   总被引:8,自引:0,他引:8  
Summary Rates of substitution mutations in two directions, v [from an A-T or T-A nucleotide pair (AT-pair) to a G-C or C-G nucleotide pair (GC-pair)] and u [from a GC-pair to an AT-pair], are usually not the same. The net effect, v/(u + v), has previously been defined as directional mutation pressure ( d ), which explains the wide interspecific variation and narrow intragenomic heterogeneity of DNA G+C content in bacteria. In this article, first, a theory of the evolution of DNA G+C content is presented that is based on the equilibrium among three components: directional mutation pressure, DNA G+C content, and selective constraints. According to this theory, consideration of both u and v as well as selective constraints is essential to explain the molecular evolution of the DNA base composition and sequence. Second, the theory of directional mutation pressure is applied to the analysis of the wide intragenomic heterogeneity of DNA G+C content in multicellular eukaryotes. The theory explains the extensive intragenomic heterogeneity of G+C content of higher eukaryotes primarily as the result of the intragenomic differences of directional mutation pressure and selective constraints rather than the result of positive selections for functional advantages of the DNA G+C content itself.  相似文献   

17.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely high and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophilamade it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

18.
We determined the nucleotide sequences of two regions in the A+T-rich region of mitochondrial DNA (mtDNA) in the siI and siII types of D. simulans, the maII type of D. mauritiana, and D. sechellia. The sequences were aligned with those of the corresponding regions of siIII of D. simulans and maI of D. mauritiana, D. melanogaster, and D. yakuba. The type I and type II elements and the T-stretches were detected in all eight of the mtDNA types compared, indicating that the three elements are essential in the A+T-rich region of this species subgroup. The alignment revealed several short repetitive sequences and relatively large deletions in the central portions of the region. In the highly conserved sequence elements in the type II elements, the substitution rates were not uniform among lineages and acceleration in the substitution rate might have been due to loss of functional constraint in the stem–loop-forming sequences predicted in the type II elements. Patterns of nucleotide substitutions observed in the A+T-rich region were further compared with those in the coding regions and in the intergenic regions of mtDNA. Substitutions between A and T were particularly repressed in the highly conserved sequence elements and in the intergenic regions compared with those in the A+T-rich region excluding the highly conserved sequence elements and in the fourfold degenerate sites in the coding regions. The functional and structural characteristics of the A+T-rich region that might be involved in this substitutional bias are discussed.  相似文献   

19.
A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hemipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one another. We found that the correlation was positive and statistically significant (R2 = 0.73, P = 0.01; Rs = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.  相似文献   

20.
Since plant mitochondrial genomes exhibit some of the slowest known synonymous substitution rates, it is generally believed that they experience exceptionally low mutation rates. However, the use of synonymous substitution rates to infer mutation rates depends on the implicit assumption that synonymous sites are evolving neutrally (or nearly so). To assess the validity of this assumption in plant mitochondrial genomes, we examined coding sequence for footprints of selection acting at synonymous sites. We found that synonymous sites exhibit an AT rich and pyrimidine skewed nucleotide composition compared to both non-synonymous sites and non-coding regions. We also found some evidence for selection associated with both biased codon usage and conservation of regulatory sequences involved in mRNA processing, although some of these findings are subject to alternative non-adaptive interpretations. Regardless, the inferred strength of selection appears too weak to account for the variation in substitution rates between the mitochondrial genomes of plants and other multicellular eukaryotes. Therefore, these results are consistent with the interpretation that plant mitochondrial genomes experience a substantially lower mutation rate rather than increased functional constraints acting on synonymous sites. Nevertheless, there are important nucleotide composition patterns (particularly the differences between synonymous sites and non-coding DNA) that remain largely unexplained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号