首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3-14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects,…) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

2.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3–14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects, …) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

3.
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue‐cultured plantlets grown in vitro. Six mutants of strain XaFL07‐1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly‐β‐hydroxybutyrate than the wild‐type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non‐ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild‐type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.  相似文献   

4.
Albicidin is a pathotoxin produced by Xanthomonas albilineans, a xylem-invading pathogen that causes leaf scald disease of sugarcane. Albicidin is synthesized by a nonribosomal pathway via modular polyketide synthase and nonribosomal peptide synthetase (NRPS) megasynthases, and NRPS adenylation (A) domains are responsible for the recognition and activation of specific amino acid substrates. DNA fragments (0.5 kb) encoding the regions responsible for the substrate specificities of six albicidin NRPS A domains from 16 strains of X. albilineans representing the known diversity of this pathogen were amplified and sequenced. Polymorphism analysis of these DNA fragments at different levels (DNA, protein, and NRPS signature) showed that these pathogenicity loci were highly conserved. The conservation of these loci most likely reflects purifying selective pressure, as revealed by a comparison with the variability of nucleotide and amino acid sequences of two housekeeping genes (atpD and efp) of X. albilineans. Nevertheless, the 16 strains of X. albilineans were differentiated into several groups by a phylogenetic analysis of the nucleotide sequences corresponding to the NRPS A domains. One of these groups was representative of the genetic diversity previously found within the pathogen by random fragment length polymorphism and amplified fragment length polymorphism analyses. This group, which differed by three single synonymous nucleotide mutations, contained only four strains of X. albilineans that were all involved in outbreaks of sugarcane leaf scald. The amount of albicidin produced in vitro in agar and liquid media varied among the 16 strains of X. albilineans. However, no relationship among the amount of albicidin produced in vitro and the pathotypes and genetic diversity of the pathogen was found. The NRPS loci contributing to the synthesis of the primary structure of albicidin apparently are not involved in the observed pathogenicity differences among strains of X. albilineans.  相似文献   

5.
Samples of maize leaves naturally infected with maize streak virus (MSV) from Malawi and South Africa, as well as sugarcane leaves naturally infected with sugarcane streak virus (SSV) from Egypt, were examined by light (LM) and transmission electron, microscopy (TEM). Intranuclear inclusions, detectable by both methods, were found mainly in mesophyll and bundle sheath cells, and less frequently in vascular parenchyma and immature phloem cells. At higher TEM magnifications, these inclusions consisted, of crystalline or noncrystalline aggregates of isometric geminivirus–like particles (VLP) that occurred either singly or in geminate arrays. Cytopathological changes in these cells were confined to the nuclei, which were usually larger than normal, with peripheral chromatin and nucleoli. The nuclear envelope of some inclusion–containing nuclei was ruptured, and occasionally a crystal of VLP was found in the cytoplasm of cells in which no intact nuclei were detected. No differences in cytopathology were found between MSV and SSV, or between the two MSV isolates examined.  相似文献   

6.
7.
Visual symptoms of leaf scald necrosis in sugarcane (Saccharum officinarum) leaves develop in parallel to the accumulation of a fibrous material invading exocellular spaces and both xylem and phloem. These fibers are produced and secreted by the plant-associated bacterium Xanthomonas albilineans. Electron microscopy and specific staining methods for polysaccharides reveal the polysaccharidic nature of this material. These polysaccharides are not present in healthy leaves or in those from diseased plants without visual symptoms of leaf scald. Bacteria in several leaf tissues have been detected by immunogold labeling. The bacterial polysaccharide is not produced in axenic culture but it is actively synthesized when the microbes invade the host plant. This finding may be due to the production of plant glycoproteins, after bacteria infection which inhibit microbial proteases. In summary, our data are consistent with the existence of a positive feedback loop in which plant-produced glycoproteins act as a cell-to-bacteria signal that promotes xanthan production, by protecting some enzymes of xanthan biosynthesis against from bacterial proteolytic degradation.Key words: leaf scald, infectivity, Saccharum officinarum (L.) cv. mayarí 55-14, sugarcane glycoproteins, xanthan-like polysaccharide, Xanthomonas albilineans  相似文献   

8.
Narváez-Vásquez J  Ryan CA 《Planta》2004,218(3):360-369
The systemin precursor, prosystemin, has been previously shown to be sequestered in vascular bundles of tomato (Lycopersicon esculentum Mill.) plants, but its subcellular compartmentalization and association with a specific cell type has not been established. We present in situ hybridization and immunocytochemical evidence at the light, confocal, and transmission electron microscopy levels that wound-induced and methyl jasmonate-induced prosystemin mRNA and protein are exclusively found in vascular phloem parenchyma cells of minor veins and midribs of leaves, and in the bicollateral phloem bundles of petioles and stems of tomato. Prosystemin protein was also found constitutively in parenchyma cells of various floral organs, including sepals, petals and anthers. At the subcellular level, prosystemin was found compartmentalized in the cytosol and the nucleus of vascular parenchyma cells. The cumulative data indicate that vascular phloem parenchyma cells are the sites for the synthesis and processing of prosystemin as a first line of defense signaling in response to herbivore and pathogen attacks.Abbreviations IgG immunoglobulin - TEM transmission electron microscope  相似文献   

9.
Tilletia laevis Kühn (syn. Tilletia foetida (Wallr.) Liro.) causes wheat common bunt, which is one of the most devastating plant diseases in the world. Common bunt can result in a reduction of 80% or even a total loss of wheat production. In this study, the characteristics of T. laevis infection in compatible wheat plants were defined based on the combination of scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. We found T. laevis could lead to the abnormal growth of wheat tissues and cells, such as leakage of chloroplasts, deformities, disordered arrangements of mesophyll cells and also thickening of the cell wall of mesophyll cells in leaf tissue. What’s more, T. laevis teliospores were found in the roots, stems, flag leaves, and glumes of infected wheat plants instead of just in the ovaries, as previously reported. The abnormal characteristics caused by T. laevis may be used for early detection of this pathogen instead of molecular markers in addition to providing theoretical insights into T. laevis and wheat interactions for breeding of common bunt resistance.  相似文献   

10.
Xanthomonas is one of the most widespread phytobacteria, causing diseases on a variety of agricultural plants. To develop novel control techniques, knowledge of bacterial behavior inside plant cells is essential. Xanthomonas campestris pv. campestris, a vascular pathogen, is the causal agent of black rot on leaves of Brassicaceae, including Arabidopsis thaliana. Among the X. campestris pv. campestris stocks in the MAFF collection, we selected XccMAFF106712 as a model compatible pathogen for the A. thaliana reference ecotype Columbia (Col-0). Using modified green fluorescent protein (AcGFP) as a reporter, we observed real time XccMAFF106712 colonization in planta with confocal microscopy. AcGFP-expressing bacteria colonized the inside of epidermal cells and the apoplast, as well as the xylem vessels of the vasculature. In the case of the type III mutant, bacteria colonization was never detected in the xylem vessel or apoplast, though they freely enter the xylem vessel through the wound. After 9 days post inoculation with XccMAFF106712, the xylem vessel became filled with bacterial aggregates. This suggests that Xcc colonization can be divided into main four steps, (1) movement in the xylem vessel, (2) movement to the next cell, (3) adhesion to the host plant cells, and (4) formation of bacterial aggregates. The type III mutant abolished at least steps (1) and (2). Better understanding of Xcc colonization is essential for development of novel control techniques for black rot.  相似文献   

11.

Background and Aims

The bacterium Xylella fastidiosa (Xf), responsible for Pierce''s disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf.

Methods

Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant.

Key Results

There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement.

Conclusions

Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.  相似文献   

12.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

13.
The role of the sucrose transporter OsSUT1 in assimilate retrieval via the xylem, as a result of damage to and leakage from punctured phloem was examined after rusty plum aphid (Hysteroneura setariae, Thomas) infestation on leaves from 3‐week‐old rice (Oryza sativa L. cv Nipponbare) plants. Leaves were examined over a 1‐ to 10‐day infestation time course, using a combination of gene expression and β‐glucuronidase (GUS) reporter gene analyses. qPCR and Western blot analyses revealed differential expression of OsSUT1 during aphid infestation. Wide‐field fluorescence microscopy was used to confirm the expression of OsSUT1‐promoter::GUS reporter gene in vascular parenchyma associated with xylem elements, as well as in companion cells associated with phloem sieve tubes of large, intermediate and small vascular bundles within the leaf blade, in regions where the aphids had settled and were feeding. Of great interest was up‐regulation of OsSUT1 expression associated with the xylem parenchyma cells, abutting the metaxylem vessels, which confirmed that OsSUT1 was not only involved in loading of sugars into the phloem under normal physiological conditions, but was apparently involved in the retrieval of sucrose leaked into the xylem conduits, which occurred as a direct result of aphid feeding, probing and puncturing of vascular bundles. The up‐regulation of OsSUT1 in xylem vascular parenchyma thus provides evidence in support of the location within the xylem parenchyma cells of an efficient mechanism to ensure sucrose recovery after loss to the apoplast (xylem) after aphid‐related feeding damage and its transfer back to the symplast (phloem) in O. sativa leaves.  相似文献   

14.
Oil palm seedlings (one-leaf stage) grown from Malaysian seed were inoculated with six African isolates of Fusarium oxysporum f. sp. elaeidis and one African isolate of Fusarium oxysporum var. redolens. All the isolates induced similar symptoms and anatomical responses in the inoculated palms. The pathogen invaded the root, bulb, leaf bases and leaves in that sequence. In the root and bulb, infection resulted in plugging of xylem elements with mycelium, conidia, tyloses and gums, disintegration and plugging of phloem tissues, disintegration of plugged vascular elements forming gaps and cavities, and collapse of cortical tissues leading to the isolation of the infected vascular tissues. Formation of hypertrophic or hyperplastic cells in the xylem parenchyma was not observed. Anatomical changes in the infected leaf bases and petioles were similar to those occurring in the infected bulb; except that tyloses were formed less frequently. Generally there was no sign of the pathogen in the wilted leaf blade, but the epidermal, hypodermal and mesophyll cells appeared shrunken or to have collapsed. No hyphae or anatomical changes were observed m the tissues of symptomless inoculated palms.  相似文献   

15.
16.
The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.  相似文献   

17.
Transverse sections of immature and mature sugarcane internodes were investigated anatomically with white and fluorescence light microscopy. The pattern of lignification and suberization was tested histo-chemically. Lignification began in the xylem of vascular bundles and progressed through the sclerenchymatic bundle sheath into the storage parenchyma. Suberization began in parenchyma cells adjacent to vascular bundle sheaths and spread to the storage parenchyma and outer sheath cells. In mature internodes most of the storage parenchyma was lignified and suberized to a significant degree, except in portions of walls of isolated cells. The pattern of increasing lignification and suberization in maturing internodes more or less paralleled an increase of sucrose in stem tissue. In mature internodes having a high sucrose concentration, the vascular tissue was surrounded by thick-walled, lignified and suberized sclerenchyma cells. The apoplastic tracer dyes triso-dium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) and amido black 10 B, fed into cut ends of the stalk, wereconfined to the vascular bundles in all internodes above the one that was cut — with no dye apparently in storage parenchyma tissue. Thus both structural and experimental evidence is consistent with vascular tissue being increasingly isolated from the storage parenchyma as maturation of the tissue proceeds. We conclude that in mature internodes the pathway for sugars from the phloem to the storage parenchyma is symplastic. The data suggest that an increasingly greater role for a symplastic pathway of sugar transfer occurs as the tissue undergoes lignification/suberization.  相似文献   

18.
We investigated the pattern of aluminum (Al) accumulation in leaf tissues of native hyperaccumulator Vochysiaceae species Qualea grandiflora,Callisthene major, and Vochysia pyramidalis, from the Brazilian Cerrado. Non-accumulator Sclerolobium paniculatum was used as a control species. We expected a strong compartmentalization of Al in non-active leaf cell compartments such as cell walls and vacuoles in Al-accumulating species and the absence of Al in critical metabolic sites such as the chloroplasts. Plant leaves were harvested in the field and cut in small segments for histological analysis; hematoxylin dye was used for Al localization in tissues. Results of soil analysis of the three sites and the concentration of Al in leaves indicated that there is no direct relationship between Al availability in soils and Al hyperaccumulation among the Vochysiaceae species evaluated. The cross-sections of leaf tissues showed hematoxylin color in the palisade and spongy parenchyma cells (chloroplast) of Q. grandiflora and C. major. The vascular system of Q. grandiflora was not colored, but some cells from the xylem region of C. major were stained. In contrast, the adaxial and abaxial epidermal cells of V. pyramidalis were colored by hematoxylin, as were some cells from the vascular bundle, but color formation was not observed in the cells of palisade parenchyma. Al was not detected in leaves of S. paniculatum. We concluded that, although hyperaccumulation of Al is a common trait in the Vochysiaceae family, the processes of storage and detoxification in leaf tissues differ among the species. Two of the three hyperaccumulator species use chloroplasts as a sink for Al, with no apparent signs of toxicity. Therefore, the physiological role of Al in plant tissues remains to be elucidated.  相似文献   

19.
Virus invasion of minor veins in inoculated leaves of a host is the likely prelude to systemic movement of the pathogen and to subsequent yield reduction and quality loss. In this study we have analyzed the cell number and arrangement in minor veins within mature leaves of various members of the Solanaceae and Fabaceae families. We then monitored the accumulation pattern of several tobamoviruses and potyviruses in these veins at the time of rapid, phloem-mediated movement of viruses. Vascular parenchyma cells were the predominant and sometimes only cells to become visibly infected among the cells surrounding the sieve elements in minor veins containing 9 to 12 cells. In no instance did we observe a companion cell infected without a vascular parenchyma cell also being infected in the same vein. This suggests that the viruses used in this study first enter the vascular parenchyma cells and then the companion cells during invasion. The lack of detectable infection of smooth-walled companion or transfer cells, respectively, from inoculated leaves of bean (Phaseolus vulgaris) and pea (Pisum sativum) during a period of known rapid, phloem-mediated movement suggests that some viruses may be able to circumvent these cells in establishing phloem-mediated infection. The cause of the barrier to virus accumulation in the companion or transfer cells, the relationship of this barrier to previously identified barriers for virus or photoassimilate transport, and the relevance of these findings to photoassimilate transport models are discussed.  相似文献   

20.
A newly recognised virus with isometric particles 50 nm in diameter was detected in Ipomoea batatas (sweet potato) by graft-transmission to I. setosa. Virus particles and intracellular inclusions, although not seen in infected I. batatus, were found in the cytoplasm of most cell types of I. setosa. The caulimo-like particles were most abundant with vesicles immediately adjacent to inclusions. The ovoid or spherical inclusions, which differ markedly from those of caulimovi, ruses, have a large central lacuna and usually several smaller peripheral lacunae. Infected vascular parenchyma cells sometimes protrude into, and occasionally completely occlude, adjacent xylem vessels, observations possibly explaining the sudden wilting and premature senescence of infected leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号