首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: BACKGROUND: Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. METHODS: Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. RESULTS: EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. CONCLUSION: EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.  相似文献   

2.

Background

Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation.

Methodology/Principal Findings

Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R2 = 0.96. Bland-Altman analysis showed a bias of −1.07±24.71 ml and limits of agreement of −49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R2 values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT.

Conclusions/Significance

Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT.  相似文献   

3.

Background

Chronic lung diseases are a major issue in public health. A serial pulmonary assessment using imaging techniques free of ionizing radiation and which provides early information on local function impairment would therefore be a considerably important development. Magnetic resonance imaging (MRI) is a powerful tool for the static and dynamic imaging of many organs. Its application in lung imaging however, has been limited due to the low water content of the lung and the artefacts evident at air-tissue interfaces. Many attempts have been made to visualize local ventilation using the inhalation of hyperpolarized gases or gadolinium aerosol responding to MRI. None of these methods are applicable for broad clinical use as they require specific equipment.

Methods

We have shown previously that low-field MRI can be used for static imaging of the lung. Here we show that mathematical processing of data derived from serial MRI scans during the respiratory cycle produces good quality images of local ventilation without any contrast agent. A phantom study and investigations in 85 patients were performed.

Results

The phantom study proved our theoretical considerations. In 99 patient investigations good correlation (r = 0.8; p ≤ 0.001) was seen for pulmonary function tests and MR ventilation measurements. Small ventilation defects were visualized.

Conclusion

With this method, ventilation defects can be diagnosed long before any imaging or pulmonary function test will indicate disease. This surprisingly simple approach could easily be incorporated in clinical routine and may be a breakthrough for lung imaging and functional assessment.  相似文献   

4.

Background and objectives

We investigated the effect of different breathing aids on ventilation distribution in healthy adults and subjects with cystic fibrosis (CF).

Methods

In 11 healthy adults and 9 adults with CF electrical impedance tomography measurements were performed during spontaneous breathing, continuous positive airway pressure (CPAP) and positive expiratory pressure (PEP) therapy randomly applied in upright and lateral position. Spatial and temporal ventilation distribution was assessed.

Results

The proportion of ventilation directed to the dependent lung significantly increased in lateral position compared to upright in healthy and CF. This effect was enhanced with CPAP but neutralised with PEP, whereas the effect of PEP was larger in the healthy group. Temporal ventilation distribution showed exactly the opposite with homogenisation during CPAP and increased inhomogeneity with PEP.

Conclusions

PEP shows distinct differences to CPAP with respect to its impact on ventilation distribution in healthy adults and CF subjects EIT might be used to individualise respiratory physiotherapy.  相似文献   

5.

Background

Electrical impedance tomography (EIT) is an emerging imaging technology that has been used to monitor brain injury and detect acute stroke. The time and frequency properties of electrode–skin contact impedance are important for brain EIT because brain EIT measurement is performed over a long period when used to monitor brain injury, and is carried out across a wide range of frequencies when used to detect stroke. To our knowledge, no study has simultaneously investigated the time and frequency properties of both electrode and conductive gel for brain EIT.

Methods

In this study, the contact impedance of 16 combinations consisting of 4 kinds of clinical electrode and five types of commonly used conductive gel was measured on ten volunteers’ scalp for a period of 1 h at frequencies from 100 Hz to 1 MHz using the two-electrode method. And then the performance of each combination was systematically evaluated in terms of the magnitude of contact impedance, and changes in contact impedance with time and frequency.

Results

Results showed that combination of Ag+/Ag+Cl? powder electrode and low viscosity conductive gel performed best overall (Ten 20® in this study); it had a relatively low magnitude of contact impedance and superior performance regarding contact impedance with time (p?<?0.05) and frequency (p?<?0.05).

Conclusions

Experimental results indicates that the combination of Ag+/Ag+Cl? powder electrode and low viscosity conductive gel may be the best choice for brain EIT.
  相似文献   

6.

Introduction

Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited.

Methods

We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data.

Results and Conclusions

Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.  相似文献   

7.

Introduction

Patients with acute respiratory distress syndrome (ARDS) typically show a high degree of ventilation inhomogeneity, which is associated with morbidity and unfavorable outcomes. Electrical impedance tomography (EIT) is able to detect ventilation inhomogeneity, but it is unclear which method for defining the region of interest (ROI) should be used for this purpose. The aim of our study was to compare the functional region of interest (fROI) method to both the lung area estimation method (LAEM) and no ROI when analysing global parameters of ventilation inhomogeneity. We assumed that a good method for ROI determination would lead to a high discriminatory power for ventilation inhomogeneity, as defined by the area under the receiver operating characteristics curve (AUC), comparing patients suffering from ARDS and control patients without pulmonary pathologies.

Methods

We retrospectively analysed EIT data from 24 ARDS patients and 12 control patients without pulmonary pathology. In all patients, a standardized low-flow-pressure volume maneuver had been performed and was used for EIT image generation. We compared the AUC for global inhomogeneity (GI) index and coefficient of variation (CV) between ARDS and control patients using all EIT image pixels, the fROI method and the LAEM for ROI determination.

Results

When analysing all EIT image pixels, we found an acceptable AUC both for the GI index (AUC = 0.76; 95% confidence interval (CI) 0.58–0.94) and the CV (AUC = 0.74; 95% CI 0.55–0.92). With the fROI method, we found a deteriorating AUC with increasing threshold criteria. With the LAEM, we found the best AUC both for the GI index (AUC = 0.89; 95% CI 0.78–1.0) and the CV (AUC = 0.89; 95% CI 0.78–1.0) using a threshold criterion of 50% of the maximum tidal impedance change.

Conclusion

In the assessment of ventilation inhomogeneity with EIT, functional regions of interest obscure the difference between patients with ARDS and control patients without pulmonary pathologies. The LAEM is preferable to the fROI method when assessing ventilation inhomogeneity.  相似文献   

8.

Background

Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF) results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients.

Methods

We studied 36 subjects (PEF range 80–570 l/min). All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique) or a forced maximal expiration to residual volume (FVC technique). Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer.

Results

The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p < 0.0001). The mean PEF recorded with the turbine spirometer was 5.5% lower than the Wright meter reading. The Fleisch spirometer result was 19.5% lower than the Wright reading. However, adjustment of the Wrights measurements from the traditional Wright's scale to the new EU Peak Flow scale produced results that were only 7.2% higher than the Fleisch pneumotachograph measurements.

Conclusion

Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.  相似文献   

9.

Objective

Variations of conductive fluid content in brain tissue (e.g. cerebral edema) change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT), an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content.

Design

a prospective study.

Setting

In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank.

Patients

23 patients with brain edema.

Interventions

The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes.

Measurement and Main Results

Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027). Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients'' responses to such treatment.

Conclusions

EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients.  相似文献   

10.

Background

Several concepts of treatment in neonatal ARDS have been proposed in the last years. The present study compared the effects of open lung concept positive pressure ventilation (PPVOLC) with a conventional ventilation strategy combined with administration of two different surfactant preparations on lung function and surfactant homoeostasis.

Methods

After repeated whole-lung saline lavage, 16 newborn piglets were assigned to either PPVOLC (n = 5) or surfactant treatment under conventional PPV using a natural bovine (n = 5) or a monomeric protein B based surfactant (n = 6).

Results

Comprehensive monitoring showed each treatment strategy to improve gas exchange and lung function, although the effect on PaO2 and pulmonary compliance declined over the study period in the surfactant groups. The overall improvement of the ventilation efficiency index (VEI) was significantly greater in the PPVOLC group. Phospholipid and protein analyses of the bronchoalveolar lavage fluid showed significant alterations to surfactant homoeostasis in the PPVOLC group, whereas IL-10 and SP-C mRNA expression was tendentially increased in the surfactant groups.

Conclusion

The different treatment strategies applied could be shown to improve gas exchange and lung function in neonatal ARDS. To which extent differences in maintenance of lung function and surfactant homeostasis may lead to long-term consequences needs to be studied further.  相似文献   

11.

Purpose

to determine diagnosis and prognosis value of MRI in Peyronie’s disease.

Material and Methods

thirty one penile MR examinations have been performed in 28 patients aged between 21 and 73. (1 tesla; surface coil; sagittal SET1, axial SET2 weighted, T1 before and after Gadolinium)
  • - In all cases but one, fibrous plaques were clinically palpable.
  • - Images were compared with clinical examination and evolution under anti-inflammatory drugs.
  • Results

  • - In 3 cases, MRI misdiagnosed one unique plague.
  • - In 2 additional cases, one of the 2 clinical plaques was not detected.
  • - In 5 cases, MRI depicted more lesions than palpation.
  • - Gadolinium Enhancement was always correlated with a good response to anti-inflamatory drugs but this treatment was also useful in one case who showed no enhancement.
  • Conclusion

    MRI can be helpfull in the pretreatment assessment and int he follow-up of Peyronie’s disease.  相似文献   

    12.

    Background

    Alveolar volume measured according to the American Thoracic Society-European Respiratory Society (ATS-ERS) guidelines during the single breath diffusion test can be underestimated when there is maldistribution of ventilation. Therefore, the alveolar volume calculated by taking into account the ATS-ERS guidelines was compared to the alveolar volume measured from sequentiallly collected samples of the expired volume in two groups of individuals: COPD patients and healthy individuals. The aim of this study was to investigate the effects of the maldistribution of ventilation on the real estimate of alveolar volume and to evaluate some indicators suggestive of the presence of maldistribution of ventilation.

    Methods

    Thirty healthy individuals and fifty patients with moderate-severe COPD were studied. The alveolar volume was measured either according to the ATS-ERS guidelines or considering the whole expired volume subdivided into five quintiles. An index reflecting the non-uniformity of the distribution of ventilation was then derived (DeltaVA/VE).

    Results

    Significant differences were found when comparing the two measurements and the alveolar volume by quintiles appeared to have increased progressively towards residual volume in healthy individuals and much more in COPD patients. Therefore, DeltaVA/VE resulted in an abnormal increase in COPD.

    Conclusion

    The results of our study suggest that the alveolar volume during the single breath diffusion test should be measured through the collection of a sample of expired volume which could be more representative of the overall gas composition, especially in the presence of uneven distribution of ventilation. Further studies aimed at clarifying the final effects of this way of calculating the alveolar volume on the measure of DLCO are needed. DeltaVA/VE is an index that can help assess the severity of inhomogeneity in COPD patients.  相似文献   

    13.

    Introduction

    Lung-protective ventilation aims at using low tidal volumes (VT) at optimum positive end-expiratory pressures (PEEP). Optimum PEEP should recruit atelectatic lung regions and avoid tidal recruitment and end-inspiratory overinflation. We examined the effect of VT and PEEP on ventilation distribution, regional respiratory system compliance (CRS), and end-expiratory lung volume (EELV) in an animal model of acute lung injury (ALI) and patients with ARDS by using electrical impedance tomography (EIT) with the aim to assess tidal recruitment and overinflation.

    Methods

    EIT examinations were performed in 10 anaesthetized pigs with normal lungs ventilated at 5 and 10 ml/kg body weight VT and 5 cmH2O PEEP. After ALI induction, 10 ml/kg VT and 10 cmH2O PEEP were applied. Afterwards, PEEP was set according to the pressure-volume curve. Animals were randomized to either low or high VT ventilation changed after 30 minutes in a crossover design. Ventilation distribution, regional CRS and changes in EELV were analyzed. The same measures were determined in five ARDS patients examined during low and high VT ventilation (6 and 10 (8) ml/kg) at three PEEP levels.

    Results

    In healthy animals, high compared to low VT increased CRS and ventilation in dependent lung regions implying tidal recruitment. ALI reduced CRS and EELV in all regions without changing ventilation distribution. Pressure-volume curve-derived PEEP of 21±4 cmH2O (mean±SD) resulted in comparable increase in CRS in dependent and decrease in non-dependent regions at both VT. This implied that tidal recruitment was avoided but end-inspiratory overinflation was present irrespective of VT. In patients, regional CRS differences between low and high VT revealed high degree of tidal recruitment and low overinflation at 3±1 cmH2O PEEP. Tidal recruitment decreased at 10±1 cmH2O and was further reduced at 15±2 cmH2O PEEP.

    Conclusions

    Tidal recruitment and end-inspiratory overinflation can be assessed by EIT-based analysis of regional CRS.  相似文献   

    14.

    Aims

    Estimates of root absorption magnitude are needed for the balanced management of forest ecosystems, but no methods able to work on the whole tree and stand level were available. Modified earth impedance method was developed recently and here it was tested, by comparing the results with those obtained by combination of several classical methods.

    Methods

    We used direct (soil cores, scanning and microscopy) and indirect (sap flow patterns and modified earth impedance) methods in an attempt to estimate the absorptive root area indexes (RAI) at two sites of about 25 and 40-years-old Norway spruce. We considered the geometric surfaces of all scanned fine roots to be equal to the fine root absorptive area (RAI scan ). To estimate the potentially physically permeable area of fine roots, we microscopically evaluated the point of secondary xylem appearance and calculated the geometric area of root portions with primary structure (RAI micro ). We termed the area of electrically conductive root surface as the active (ion) absorptive area (RAI mei ) and measured its extent by the modified earth impedance (MEI) method.

    Results

    The highest values for absorptive root areas at the two experimental sites we obtained with the scanning method (RAI scan was considered to be 100%), followed by the RAI micro (51%) and RAI mei (32%). RAImei reached about 2/3 of RAImicro. The surface area of the ectomycorrhizal hyphae was an order of magnitude larger than that of all fine roots, but the MEI did not measure such increase.

    Conclusions

    We showed that the absorptive root area, indirectly estimated by the MEI, provides consistent results that approach the values obtained for fine roots with a primary structure estimated by traditional direct methods. The similar range of the values for the absorptive root surface area obtained by microscopy and by the MEI method indicates that this method is feasible and that it could be used to determine the extent of active absorptive root surface areas in forests.  相似文献   

    15.

    Background

    Although the minimization of the applied tidal volume (VT) during high-frequency oscillatory ventilation (HFOV) reduces the risk of alveolar shear stress, it can also result in insufficient CO2-elimination with severe respiratory acidosis. We hypothesized that in a model of acute respiratory distress (ARDS) the application of high oscillatory frequencies requires the combination of HFOV with arteriovenous extracorporeal lung assist (av-ECLA) in order to maintain or reestablish normocapnia.

    Methods

    After induction of ARDS in eight female pigs (56.5 ± 4.4 kg), a recruitment manoeuvre was performed and intratracheal mean airway pressure (mPaw) was adjusted 3 cmH2O above the lower inflection point (Plow) of the pressure-volume curve. All animals were ventilated with oscillatory frequencies ranging from 3–15 Hz. The pressure amplitude was fixed at 60 cmH2O. At each frequency gas exchange and hemodynamic measurements were obtained with a clamped and de-clamped av-ECLA. Whenever the av-ECLA was de-clamped, the oxygen sweep gas flow through the membrane lung was adjusted aiming at normocapnia.

    Results

    Lung recruitment and adjustment of the mPaw above Plow resulted in a significant improvement of oxygenation (p < 0.05). Compared to lung injury, oxygenation remained significantly improved with rising frequencies (p < 0.05). Normocapnia during HFOV was only maintained with the addition of av-ECLA during frequencies of 9 Hz and above.

    Conclusion

    In this animal model of ARDS, maximization of oscillatory frequencies with subsequent minimization of VT leads to hypercapnia that can only be reversed by adding av-ECLA. When combined with a recruitment strategy, these high frequencies do not impair oxygenation  相似文献   

    16.

    Background

    Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM).

    Methods

    The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart.

    Results

    USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%.

    Conclusion

    The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing.  相似文献   

    17.

    Background

    Prolonged weaning from mechanical ventilation has a major impact on ICU bed occupancy and patient outcome, and has significant cost implications. There is evidence in patients around the period of extubation that helium-oxygen leads to a reduction in the work of breathing. Therefore breathing helium-oxygen during weaning may be a useful adjunct to facilitate weaning. We hypothesised that breathing helium-oxygen would reduce carbon dioxide production during the weaning phase of mechanical ventilation.

    Materials/patients and methods

    We performed a prospective randomised controlled single blinded cross-over trial on 19 adult intensive care patients without significant airways disease who fulfilled criteria for weaning with CPAP. Patients were randomised to helium-oxygen and air-oxygen delivered during a 2 hour period of CPAP ventilation. Carbon dioxide production (VCO2) was measured using a near patient main stream infrared carbon dioxide sensor and fixed orifice pneumotachograph.

    Results

    Compared to air-oxygen, helium-oxygen significantly decreased VCO2 production at the end of the 2 hour period of CPAP ventilation; there was a mean difference in CO2 production of 48.9 ml/min (95% CI 18.7-79.2 p = 0.003) between the groups. There were no significant differences in other respiratory and haemodynamic parameters.

    Conclusion

    This study shows that breathing a helium-oxygen mixture during weaning reduces carbon dioxide production. This physiological study supports the need for a clinical trial of helium-oxygen mixture during the weaning phase of mechanical ventilation with duration of weaning as the primary outcome.

    Trial registration

    ISRCTN56470948  相似文献   

    18.
    Analogues of KP1019 containing iodinated indazole ligands were prepared to investigate the biological fate of the Ru–N-heterocycle bond in this class of anticancer agents. The new complexes, 5-iodoindazolium trans-tetrachloridobis(5-iodoindazole)ruthen(III)ate (1) and 5-iodoindazolium trans-tetrachlorido(dimethyl sulfoxide)(5-iodoindazole)ruthen(III)ate (3), were characterized by elemental analysis, mass spectrometry and UV–vis spectrophotometry. Tetramethylammonium salts of these complexes (2 and 4) were synthesized and characterized in a similar manner. Half-maximum inhibitory concentrations of 2 and 4 with regard to A549 cells at 24 h were determined on the basis of the dose–response curves derived from real-time cell adhesion impedance measurements and were shown to be in the same range as those determined for KP1019 and NAMI-A using the same method. X-ray fluorescence imaging of single cultured A549 cells treated with 2 or 4 showed that, in both cases, the distribution of ruthenium and iodine was identical, indicating that the Ru–N bonds in the anionic complexes remained intact after incubation in culture medium and subsequent cellular uptake and processing.  相似文献   

    19.

    Aims

    The study was focused on comparing the results of the three instrumental methods applied simultaneously for root studies in several tree species representing contrasting situations: root systems of different structure and stems of a wide range of diameters (especially when considering their resistivity). We want to learn properties of the methods, make some improvements and test their validity, before they will be applied to a large series of trees at the stand level.

    Material and methods

    Douglas fir (Pseudotsuga menziessii (Mirbel) Franco) with very asymmetric root system and Blue spruce (Picea pungens Engelm.) with homogeneous root system growing in the Mendel University Training Forest Enterprise in K?tiny, were selected as the main sample trees. Three variants of stem impedance measurements needed for absorptive root area estimates were applied to an additional series of over 20 trees. In order to characterize vertical and circumferential (around stem) root distribution we applied (1) the sap flow radial patterns measured by the multi-point sensors based on the heat field deformation (HFD) method, and (2) a modified earth impedance (MEI) method from the group of thermodynamic and electric measuring methods and finally we (3) almost harmlessly excavated the whole root system by supersonic air stream. Three steps of absorptive root area measurements were improved: (a) Impact of stem impedance was almost eliminated, (b) Excessive variation of stem impedance values measured too close to stems (in a place with the most heterogeneous materials) was compensated by extrapolation of several close points, (c) Impact of high curvature of small stems was determined and eliminated by an equation.

    Results

    All the methods gave similar results when considering differences between individual trees as well as between stem sides. Sap flow density was interesting when expressed per measured absorptive root area and leaf area. Experimental data of main and additional sample trees confirmed validity of relationship, which can be applied to improve stem resistivity especially in small trees.

    Conclusions

    Results indicated, that all the instrumental methods are field applicable and suitable for quantitative measurements, when specific properties of the methods and stem macrostructure are taken into account. Soil electric parameters characterize the important properties related to presence of cracks, water content, and ion concentration, which are being analyzed now.  相似文献   

    20.

    Background Context

    Research employing gait measurements indicate asymmetries in ground reaction forces and suggest relationships between these asymmetries, neurological dysfunction and spinal deformity. Although, studies have documented the use of centre of pressure (CoP) and net joint moments in gait assessment and have assessed centre of mass (CoM)-CoP distance relationships in clinical conditions, there is a paucity of information relating to the moments about CoM. It is commonly considered that CoM is situated around S2 vertebra in normal upright posture and hence this study uses S2 vertebral prominence as reference point relative to CoM.

    Purpose

    To assess and establish asymmetry in the CoP pattern and moments about S2 vertebral prominence during level walking and its relationship to spinal deformity in adolescents with scoliosis.

    Patient sample

    Nine Adolescent Idiopathic Scoliosis subjects (8 females and 1 male with varying curve magnitudes and laterality) scheduled for surgery within 2–3 days after data collection, took part in this study.

    Outcome measures

    Kinetic and Kinematic Gait assessment was performed with an aim to estimate the CoP displacement and the moments generated by the ground reaction force about the S2 vertebral prominence during left and right stance during normal walking.

    Methods

    The study employed a strain gauge force platform to estimate the medio-lateral and anterior-posterior displacement of COP and a six camera motion analysis system to track the reflective markers to assess the kinematics. The data were recorded simultaneously.

    Results

    Results indicate wide variations in the medio lateral direction CoP, which could be related to the laterality of both the main and compensation curves. This variation is not evident in the anterior-posterior direction. Similar results were recorded for moments about S2 vertebral prominence. Subjects with higher left compensation curve had greater displacement to the left.

    Conclusion

    Although further longitudinal studies are needed, results indicate that the variables identified in this study are applicable to initial screening and surgical evaluation of scoliosis.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号