首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

2.
In many oviparous vertebrates, hatchling phenotypes are influenced by egg incubation temperature. Many of those phenotypic traits can also acclimate to long-term thermal conditions of juveniles and adults, yet the interactive effects of prehatching and posthatching temperatures on phenotypes have not been studied. To address such interaction, we incubated eggs of wood frogs (Rana sylvatica) at two temperatures and subsequently reared larvae at three temperatures in a fully factorial design. We measured body size, size-independent morphology, and burst swimming speed at one developmental stage. Body size was independent of egg temperature but decreased significantly with increasing larval temperature. Size-independent morphology depended in complex ways on both temperature treatments directly and on their interaction. Burst speed was not influenced directly by egg temperature but was influenced by larval temperature and by the interactions among egg temperature, larval temperature, and test temperature. Our results indicate pervasive effects of egg temperature even late in the larval period and show that prehatching and posthatching temperatures can interact to affect various phenotypic traits. Tadpoles may be able to alter the long-term effects of incubation temperature by choosing particular larval developmental temperatures. Thus, the importance of incubation temperature in oviparous vertebrates should be evaluated by considering the effects of posthatching temperatures.  相似文献   

3.
Understanding the mode of origin of asexuality is central to ongoing debates concerning the evolution and maintenance of sexual reproduction in eukaryotes. This is because it has profound consequences for patterns of genetic diversity and ecological adaptability of asexual lineages, hence on the outcome of competition with sexual relatives both in short and longer terms. Among the possible routes to asexuality, hybridization is a very common mechanism in animals and plants. Aphids present frequent transitions from their ancestral reproductive mode (cyclical parthenogenesis) to permanent asexuality, but the mode of origin of asexual lineages is generally not known because it has never been thoroughly investigated with appropriate molecular tools. Rhopalosiphum padi is an aphid species with coexisting sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) lineages that are genetically distinct. Previous studies have shown that asexual lineages of R. padi are heterozygous at most nuclear loci, suggesting either that they have undergone long-term asexuality (under which heterozygosity tends to increase) or that they have hybrid origins. To discriminate between these alternatives, we conducted an extensive molecular survey combining the sequence analysis of alleles of two nuclear DNA markers and mitochondrial DNA haplotypes in sexual and asexual lineages of R. padi. Both nuclear and cytoplasmic markers clearly showed that many asexual lineages have hybrid origins, the first such demonstration in aphids. Our results also indicated that asexuals result from multiple events of hybridization between R. padi and an unknown sibling species, and are of recent origin (contradicting previous estimates that asexual R. padi lineages were of moderate longevity). This study constitutes another example that putatively ancient asexual lineages are actually of much more recent origin than previously thought. It also presents a robust approach for testing whether hybrid origin of asexuality is also a common phenomenon in aphids.  相似文献   

4.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

5.
Natural populations of sexually reproducing Drosophila mercatorum are capable of a very low rate of parthenogenesis, but this mode of reproduction has apparently never characterized an entirely asexual population in this species. The high abortion rate observed in laboratory parthenogenetic lines suggests that developmental constraints may cause the failure of this trait to spread in nature. To investigate the basis of this developmental instability and how it may affect the evolution of parthenogenesis in natural populations, early embryonic development was compared between one sexual and four parthenogenetic laboratory strains of D. mercatorum. There is a large amount of variation within a given parthenogenetic strain, suggesting that parthenogenesis is associated with a general breakdown of developmental stability. There is relatively little variation among different parthenogenetic strains, suggesting that most abortions are due to a feature inherent to parthenogenetic reproduction rather than a feature of a particular genome. Likewise, there is little variation between parthenogenetic and sexual strains in the causes of abortions, suggesting that the developmental problems encountered by parthenogenetic lineages are not unique to parthenogens. Thus, the failure of parthenogenesis to spread within D. mercatorum can be attributed to no particular developmental constraint per se operating after the initiation of embryogenesis. However, the overall increase in all developmental problems that occurs with the transition from sexual to parthenogenetic development suggests that the high degree of developmental instability associated with parthenogenesis may be considered a developmental constraint in its own right.  相似文献   

6.
7.
Extensive evidence shows that incubation conditions can affect phenotypic traits of hatchling reptiles, but the relative importance of thermal versus hydric factors, and the proximate mechanisms by which such factors influence hatchling phenotypes, remain unclear for most species. We incubated eggs of an Australian scincid lizard, Lampropholis guichenoti, at four different moisture contents ranging from -500 to 0 kPa. Drier substrates reduced water uptake of eggs and resulted in smaller hatchlings, but other phenotypic traits (incubation periods, hatchling sex, body proportions, running speeds, growth rates post-hatching) were not affected by the hydric environment during incubation. Contrary to our prediction, lower water uptake during incubation (and hence, presumably, more viscous blood) did not affect embryonic heart rates. Thus, as in many other squamate species, hatchling phenotypes and embryonic developmental rates of L. guichenoti are less sensitive to hydric conditions in the nest than to thermal regimes.  相似文献   

8.
Incubation temperature influences a suite of traits in avian offspring. However, the mechanisms underlying expression of these phenotypes are unknown. Given the importance of thyroid hormones in orchestrating developmental processes, we hypothesized that they may act as an upstream mechanism mediating the effects of temperature on hatchling phenotypic traits such as growth and thermoregulation. We found that plasma T3, but not T4 concentrations, differed among newly hatched wood ducks (Aix sponsa) from different embryonic incubation temperatures. T4 at hatching correlated with time spent hatching, and T3 correlated with hatchling body condition, tarsus length, time spent hatching and incubation period. In addition, the T3 : T4 ratio differed among incubation temperatures at hatch. Our findings are consistent with the hypothesis that incubation temperature modulates plasma thyroid hormones which in turn influences multiple aspects of duckling phenotype.  相似文献   

9.
Recent studies have shown that incubation temperatures can profoundly affect the phenotypes of hatchling lizards, but the effects of hydric incubation environments remain controversial. We examined incubation-induced phenotypic variation in Bassiana duperreyi (Gray, 1938; Sauria: Scincidae), an oviparous montane lizard from south-eastern Australia. We incubated eggs from this species in four laboratory treatments, mimicking cool and moist, cool and dry, warm and moist, and warm and dry natural nest-sites, and assessed several morphological and behavioural traits of lizards after hatching. Incubation temperature influenced a lizard's hatching success, incubation period, tail length and antipredator behaviour, whereas variation in hydric conditions did not engender significant phenotypic variation for most traits. However, moisture affected incubation period slightly differently in males and females, and for a given snout-vent length moisture interacted weakly with temperature to affect lizard body mass. Although incubation conditions can substantially affect phenotypic variation among hatchling lizards, the absence of strong hydric effects suggests that hatchling lizards react less plastically to variation in moisture levels than they do to thermal conditions. Thus, our data do not support the generalization that water availability during embryogenesis is more important than temperature in determining the phenotypes of hatchling reptiles.  相似文献   

10.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

11.
Incubation is a vital component of reproduction and parental care in birds. Maintaining temperatures within a narrow range is necessary for embryonic development and hatching of young, and exposure to both high and low temperatures can be lethal to embryos. Although it is widely recognized that temperature is important for hatching success, little is known about how variation in incubation temperature influences the post‐hatching phenotypes of avian offspring. However, among reptiles it is well known that incubation temperature affects many phenotypic traits of offspring with implications for their future survival and reproduction. Although most birds, unlike reptiles, physically incubate their eggs, and thus behaviourally control nest temperatures, variation in temperature that influences embryonic development still occurs among nests within a population. Recent research in birds has primarily been limited to populations of megapodes and waterfowl; in each group, incubation temperature has substantial effects on hatchling phenotypic traits important for future development, survival, and reproduction. Such observations suggest that incubation temperature (and incubation behaviours of parents) is an important but underappreciated parental effect in birds and may represent a selective force instrumental in shaping avian reproductive ecology and life‐history traits. However, much more research is needed to understand how pervasive phenotypic effects of incubation temperature are among birds, the sources of variation in incubation temperature, and how effects on phenotype arise. Such insights will not only provide foundational information regarding avian evolution and ecology, but also contribute to avian conservation.  相似文献   

12.
The evolution of parthenogenesis is typically associated with hybridization and polyploidy. These correlates of parthenogenesis may have important physiological consequences that need be taken into account in understanding the relative merits of sexual and parthenogenetic reproduction. We compared the thermal sensitivity of aerobically sustained locomotion in hybrid/triploid parthenogenetic races of the gecko Heteronotia binoei and their diploid sexual progenitors. Endurance times at low temperature (10 degrees , 12.5 degrees , and 15 degrees C, 0.05 km h(-1)) were significantly greater in parthenogenetic females than in sexual females. Comparison of oxygen consumption rates during sustained locomotion at increasing speeds (0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 km h(-1), 25 degrees C) indicated that parthenogenetic lizards have higher maximum oxygen consumption rates and maximum aerobic speeds than do female sexual geckos. In addition, parthenogenetic geckos showed greater levels of voluntary activity at 15 degrees C than did sexual geckos, although this pattern appears strongest in comparison to male sexual forms. Parthenogenetic lineages of Heteronotia thus have an advantage over sexual lineages in being capable of greater aerobic activity. This result is opposite of that found in prior studies of parthenogenetic teiid lizards (genus Cnemidophorus) and highlights the idiosyncratic nature of phenotypic evolution in parthenogens of hybrid origin.  相似文献   

13.
Taxa with large geographic distributions generally encompass diverse macroclimatic conditions, potentially requiring local adaptation and/or phenotypic plasticity to match their phenotypes to differing environments. These eco‐evolutionary processes are of particular interest in organisms with traits that are directly affected by temperature, such as embryonic development in oviparous ectotherms. Here we examine the spatial distribution of fitness‐related early life phenotypes across the range of a widespread vertebrate, the painted turtle (Chrysemys picta). We quantified embryonic and hatchling traits from seven locations (in Idaho, Minnesota, Oregon, Illinois, Nebraska, Kansas, and New Mexico) after incubating eggs under constant conditions across a series of environmentally relevant temperatures. Thermal reaction norms for incubation duration and hatchling mass varied among locations under this common‐garden experiment, indicating genetic differentiation or pre‐ovulatory maternal effects. However, latitude, a commonly used proxy for geographic variation, was not a strong predictor of these geographic differences. Our findings suggest that this macroclimatic proxy may be an unreliable surrogate for microclimatic conditions experienced locally in nests. Instead, complex interactions between abiotic and biotic factors likely drive among‐population phenotypic variation in this system. Understanding spatial variation in key life‐history traits provides an important perspective on adaptation to contemporary and future climatic conditions.  相似文献   

14.
Many organisms considered as strictly clonal may in fact experience some rare events of sexual reproduction with their sexual relatives. However, the rate of sexual–asexual gene flow has rarely been assessed mainly because its evaluation is difficult to achieve in the field. In the cyclically parthenogenetic aphid Rhopalosiphum padi , two main sets of lineages, differing in their investment in sexual reproduction and in their genetic attributes, co-exist even at a very fine scale: the 'sexual' lineages which have a full commitment to the sexual reproduction, and the 'facultatively asexual' lineages, which allocate investment in the sexual and parthenogenetic reproduction. This system offers a unique opportunity to tackle the genetic interactions between two contrasting reproductive modes. Here, we provide evidence that gene flow occurred between sexual and facultatively asexual lineages of R. padi. We carefully examined the shuffling in phenotypic and genotypic variation following a sexual reproduction event that took place in the field. Combining genotypic data and phenotypic measurements showed that this gene mixing led to the production of a wide array of reproductive modes, including strictly asexual lineages. Finally, we discuss the central role played by facultatively asexual lineages on the maintenance of reproductive mode variation.  相似文献   

15.
Organisms with coexisting sexual and asexual populations are ideal models for studying the consequences of either reproductive mode on the quantitative genetic architecture of life-history traits. In the aphid Rhopalosiphum padi, lineages differing in their sex investment coexist but all share a common parthenogenetic phase. Here, we studied multiple genotypes of R. padi specialized either for sexual and asexual reproduction and compared their genetic variation in fitness during the parthenogenetic phase. Specifically, we estimated maintenance costs as standard metabolic rate (SMR), together with fitness (measured as the intrinsic rate of increase and the net reproductive rate). We found that genetic variation (in terms of broad-sense heritability) in fitness was higher in asexual genotypes compared with sexual genotypes. Also, we found that asexual genotypes exhibited several positive genetic correlations indicating that body mass, whole-animal SMR, and apterous individuals production are contributing to fitness. Hence, it appears that in asexual genotypes, energy is fully allocated to maximize the production of parthenogenetic individuals, the simplest possible form of aphid repertoire of life-histories strategies.  相似文献   

16.
The problem of the maintenance of anisogamous sex is addressed by considering the effect of fertilization on the fitness of parthenogenetic females when such fertilization yields inviable triploid progeny. We consider four types of parthenogenesis: (i) apomixis, (ii) homogametic amphimixis, (iii) heterogametic amphimixis, and (iv) homogametic automixis. Homozygous sexual populations are genetically stable if males or selection eliminate the excess females produced by heterozygous parthenogenetic genotypes. Homozygous parthenogenetic populations are stable if the parthenogenetic output of homozygotes exceeds that of heterozygotes. In turn, sex can only invade heterozygous parthenogenetic populations when sexual output of parthenogens is larger than their parthenogenetic output. The existence of interior stable equilibria generally requires the instability of at least one boundary and some degree of heterosis. In a two-locus model, we study the evolution of mechanisms protecting either sex or parthenogenesis in reproductively polymorphic populations. We find that males do not respond to the presence of parthenogenesis in such a way as to eliminate it, but parthenogenesis is subject to selective pressures increasing reproductive isolation, and thus the success of parthenogenesis. The results suggest that reproductively polymorphic populations are ephemeral.  相似文献   

17.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

18.
Cyclically parthenogenetic animals such as aphids are able alternating sexual and asexual reproduction during its life cycle, and represent good models for studying short-term evolutionary consequences of sex. In aphids, different morphs, whether sexual or asexual, winged or wingless, are produced in response to specific environmental cues. The production of these morphs could imply a differential energy investment between the two reproductive phases (i.e., sexual and asexual), which can also be interpreted in terms of changes in genetic variation and/or trade-offs between the associated traits. In this study we compared the G-matrices of energy metabolism, life-history traits and morph production in 10 clonal lineages (genotypes) of the pea aphid, Acyrthosiphon pisum, during both sexual and asexual phases. The heritabilities (broad-sense) were significant for almost all traits in both phases; however the only significant genetic correlation we found was a positive correlation between resting metabolic rate and production of winged parthenogenetic females during the asexual phase. These results suggest the pea aphid shows some lineage specialization in terms of energy costs, but a higher specialization in the production of the different morphs (e.g., winged parthenogenetic females). Moreover, the production of winged females during the asexual phase appears to be more costly than wingless females. Finally, the structures of genetic variance-covariance matrices differed between both phases. These differences were mainly due to the correlation between resting metabolic rate and winged parthenogenetic females in the asexual phase. This structural difference would be indicating that energy allocation rules changes between phases, emphasizing the dispersion role of asexual morphs.  相似文献   

19.
The little fire ant, Wasmannia auropunctata, displays a peculiar breeding system polymorphism. Classical haplo-diploid sexual reproduction between reproductive individuals occurs in some populations, whereas, in others, queens and males reproduce clonally. Workers are produced sexually and are sterile in both clonal and sexual populations. The evolutionary fate of the clonal lineages depends strongly on the underlying mechanisms allowing reproductive individuals to transmit their genomes to subsequent generations. We used several queen-offspring data sets to estimate the rate of transition from heterozygosity to homozygosity associated with recombination events at 33 microsatellite loci in thelytokous parthenogenetic queen lineages and compared these rates with theoretical expectations under various parthenogenesis mechanisms. We then used sexually produced worker families to define linkage groups for these 33 loci and to compare meiotic recombination rates in sexual and parthenogenetic queens. Our results demonstrate that queens from clonal populations reproduce by automictic parthenogenesis with central fusion. These same parthenogenetic queens produce normally segregating meiotic oocytes for workers, which display much lower rates of recombination (by a factor of 45) than workers produced by sexual queens. These low recombination rates also concern the parthenogenetic production of queen offspring, as indicated by the very low rates of transition from heterozygosity to homozygosity observed (from 0% to 2.8%). We suggest that the combination of automixis with central fusion and a major decrease in recombination rates allows clonal queens to benefit from thelytoky while avoiding the potential inbreeding depression resulting from the loss of heterozygosity during automixis. In sterile workers, the strong decrease of recombination rates may also facilitate the conservation over time of some coadapted allelic interactions within chromosomes that might confer an adaptive advantage in habitats disturbed by human activity, where clonal populations of W. auropunctata are mostly found.  相似文献   

20.
The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号