首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aim Bergmann's rule generally predicts larger animal body sizes with colder climates. We tested whether Bergmann's rule at the interspecific level applies to moths (Lepidoptera: Geometridae) along an extended elevational gradient in the Ecuadorian Andes. Location Moths were sampled at 22 sites in the province Zamora‐Chinchipe in southern Ecuador in forest habitats ranging from 1040 m to 2677 m above sea level. Methods Wingspans of 2282 male geometrid moths representing 953 species were measured and analysed at the level of the family Geometridae, as well as for the subfamily Ennominae with the tribes Boarmiini and Ourapterygini, and the subfamily Larentiinae with the genera Eois, Eupithecia and Psaliodes. Results Bergmann's rule was not supported since the average wingspan of geometrid moths was negatively correlated with altitude (r = ?0.59, P < 0.005). The relationship between body size and altitude in Geometridae appears to be spurious because species of the subfamily Larentiinae are significantly smaller than species of the subfamily Ennominae and simultaneously increase in their proportion along the gradient. A significant decrease of wingspan was also found in the ennomine tribe Ourapterygini, but no consistent body size patterns were found in the other six taxa studied. In most taxa, body size variation increases with altitude, suggesting that factors acting to constrain body size might be weaker at high elevations. Main conclusions The results are in accordance with previous studies that could not detect consistent body size patterns in insects at the interspecific level along climatic gradients.  相似文献   

2.
ABSTRACT Among forty species of the Korean Cidariini, a tribe of Larentiinae (Lepidoptera, Geometridae), nineteen species of ten genera are revised: Ecliptopera Warren, Lampropteryx Stephens, Eustroma Hübner, Eveeliptopera Inoue, Lobogonodes Bastelberger, Hysterura Warren, Sibatania Inoue, Eulithis Hiibner, Gandaritis Moore, and Electrophaes Prout. The diagnostic characters and monophyly of each genus are provided. Figures of adults including male and female genitalia, and distribution maps in Korea are also provided.  相似文献   

3.

Background

The moth family Geometridae (inchworms or loopers), with approximately 23 000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated.

Methodology/Principal Findings

We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae.

Conclusions/Significance

Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.  相似文献   

4.
We examine host association patterns in pteridophagous moths of the tribe Lithinini (Lepidoptera: Geometridae). This represents the first study where the host associations of oligophagous, pteridophagous Lepidoptera are analysed in a phylogenetic context. We compare the observed phylogenetic patterns of lithinine moths and their hosts with the contrasting coevolutionary scenarios proposed by Mitter et ai , and discuss the support for various hypotheses relative to Thompson's concept of coevolution as 'escape with radiation', and the chemical facilitation model of Jermy. The patterns observed support a scenario where host shifting subsequent to a single colonization event has resulted in lack of strict concordance (i.e. parallel cladogenesis) between moth and fern phylogenies.  相似文献   

5.
Aim The objective of this study was to describe and interpret the changes in faunal composition in the moth family Geometridae (Lepidoptera) along a small‐scale elevational gradient in a tropical montane rain forest. This gradient was compared with a large‐scale latitudinal gradient in Europe. Location Investigations were carried out in the province Zamora‐Chinchipe in southern Ecuador along a gradient ranging from 1040 to 2677 m above sea level at twenty‐two sites. Methods Moths were sampled with light‐traps in three field periods in 1999 and 2000 and subsequently sorted and determined to species or morphospecies. Results We analysed 13,938 specimens representing 1010 species of geometrid moths. The proportional contribution of subtaxa to the local geometrid fauna changes along the elevational gradient at all systematic levels considered. While proportions of species of the subfamilies Ennominae, Sterrhinae and Geometrinae significantly decrease, the proportion of Larentiinae increases with increasing altitude. Changes also occur within the subfamilies Ennominae and Larentiinae. The host–plant specialist ennomine tribes Cassymini, Macariini and Palyadini completely vanish, and the proportion of the tribe Boarmiini decreases at high altitudes. In contrast, the remaining tribes (mostly comprising polyphagous species) either do not show proportional changes (Azelinini, Nacophorini, Nephodiini, Ourapterygini) or even increase (Caberini, ‘Cratoptera group’). Within Larentiinae, the species proportion of the genus Eois decreases, whereas concomitantly the proportion of Eupithecia increases. There is a remarkable similarity between the altitudinal patterns in Ecuador and those found along the latitudinal gradient in Europe. Main conclusions Species of the subfamily Larentiinae seem to be particularly well‐adapted to harsh environmental conditions, towards both high altitudes and latitudes. They might disproportionately profit from lower predation at higher altitudes. Many changes in the faunal composition can be explained by expected host–plant requirements of the species involved. Our results show that diversity estimates based on taxon ratios which are assumed to be constant must be regarded with caution because such ratios can change rapidly along environmental gradients.  相似文献   

6.
7.
The classification of the Neotropical genera of the Ennominae is reviewed and 267 genera are recognised to occur in this region. Three new genera are described and three others are reinstated, while 48 generic synonyms are newly established. Other changes established in this work include 14 species synonyms and 237 new or reinstated combinations. External features and genitalia of representative members of the genera are illustrated (753 figures). All the known Neotropical species and subspecies of Ennominae are listed ( c . 3470), plus their synonyms. The tribes to which the genera belong are assessed, with c . 200 of the genera assigned to tribe or other suprageneric grouping.  © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 135 , 121–401.  相似文献   

8.
Phrygionis and Pityeja belong to the Palyadini, a tribe of neotropical Ennominae. The moths of both genera bear striking wing markings and mere variants were frequently described as species with the consequence that species diversity was overestimated. Numerous taxonomic changes are made in this work based on the study of primary types and much other material. Variation and distribution is recorded for each species and subspecies. Phylogenetic relationships within Phrygionis are examined, and comments are made on the evolution of wing pattern within this genus.
Fifteen full species are recognized in this study (13 in Phrygionis and two in Pityeja ), of which four (all in Phrygionis ) are described as new; 19 species-group (specific and subspecific) names refer to valid taxa. Twenty-four species-group names are synonymized (19 in Phrygionis and five in Pityeja ) and five are recombined with different genera (four with Phrygionis and one with Pityeja ). Three generic names are synonymized (one in Phrygionis and two in Pityeja ).  相似文献   

9.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns.  相似文献   

10.
The infraorbitals (IOs) of four species endemic to Lake Tanganyika were examined and on the basis of this information and previous morphological and molecular studies, the tribe Greenwoodochromini is synonymized with the tribe Limnochromini and a new combination for Limnochromis abeelei and Limnochromis staneri is proposed: Greenwoodochromis abeelei and Greenwoodochromis staneri. The revised tribe Limnochromini, comprising 10 species belonging to seven genera, is characterized by IOs representing types G and I. The revised genus Greenwoodochromis, which consists of four species, is characterized by IOs representing type I.  相似文献   

11.
The phylogeny of the Agathidinae (Insecta: Hymenoptera: Braconidae) is investigated based on morphological and sequence data from the D2–3 regions of 28S rDNA. Morphology and molecular data were run simultaneously and separately and the molecular and combined data sets were analyzed using both static, Clustal W, and dynamic, POY, alignments. Both alignments were conducted under a variety of gap costs and results are compared. Sixty‐two ingroup exemplars representing 22 genera and six outgroup taxa representing two subfamilies and five genera were included. Numerous taxa at the generic and tribal levels were tested for monophyly and the evolutionary history of several characters is discussed. The tribe Agathidini s.s. is found to be a derived member of the Microdini and the two are synonymized under the older name, Agathidini s.l. Support is substantial for the tribes Cremnoptini and Disophrini and Earinini but equivocal for the Agathidini s.l. At the generic level, Bassus is found to be polyphyletic. Numerous new synonymies and combinations are proposed. © The Willi Hennig Society 2006.  相似文献   

12.
Eight genera and 16 species of the Korean Cidariini, a tribe of Larentiinae (Lepidoptera, Geometridae), were revised: Dysstroma Hübner, Paradysstroma Choi, Callabraxas Butler, Thera Stephens, Heterothera Inoue, Pennithera Viidalepp, Polythrena Guenée and Xenortholitha Inoue. Pennithera comis (Butler) was newly added to the Korean fauna. Diagnostic and phylogenetic characters supporting the monophyly of the genera and a key to the genera were provided. For the species, diagnoses with figures of male and female genitalia and distributional data with maps in Korea, and taxonomic remarks were provided.  相似文献   

13.
The phylogenetic relationships of the genera in the geometrid tribe Scopulini (Lepidoptera: Sterrhinae) were examined using 141 characters of adult morphology and ecology. The study material included 92 species, representing all previously recognized genera and covering the morphological variation and full geographical range of the tribe. The cladistic analysis resulted in 20 equally parsimonious trees and a strict consensus cladogram based on these was well resolved. A majority of the recovered synapomorphic characters have been used previously in the taxonomy of the tribe. However, many novel characters were found in the sclerotized structures of the thorax. Many previously recognized genera were found to be nonmonophyletic and based on the present revised, synapomorphy-based classification, the number of recovered genera is reduced considerably. Twenty new generic synonyms and 90 new or revived species combinations are proposed. Seven genera are considered valid, with the large genus Scopula Schrank including over 85% of all species in the tribe. The taxonomic history of the tribe is reviewed and the problems of earlier classifications are discussed. A key to the genera is presented, although an informal diagnosis is preferred. All recognized genera are illustrated and a revised world checklist of the Scopulini is presented.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 143 , 473−530.  相似文献   

14.
15.
Oryzomyini is the richest tribe among the Sigmodontine rodents, encompassing 32 living and extinct genera and including an increasing number of recently described species and genera. Some Oryzomyini are tetralophodont showing a reduction in the number of molar folds to four, while most taxa in this tribe retain the plesiomorphic pentalophodont state. We applied phylogenetic methods, molecular dating techniques and ancestral area analyses to members of an oryzomyini clade informally named ‘D’ in former studies and included related fossil tetralophodont forms. Based on 98 morphological characters and sequences of five gene fragments, we found that the tetralophodont condition is paraphyletic. Among living taxa, Pseudoryzomys is sister to Holochilus, and Lundomys is derived from a basal divergence. A clade formed by living Holochilus and the fossils Noronhomys and Carletonomys is sister to Holochilus primigenus, making Holochilus paraphyletic. Therefore, we describe a new genus that accommodates the fossil H. primigenus. Because trans‐Andean taxa currently share a common ancestor with taxa of cis‐Adean distribution, the northern Andes uplift may have worked as a postdispersal barrier. The tetralophodont lineages diverged during the Pliocene from a cis‐Andean ancestor, and the Great Plains in South America may have favoured the diversification of tetralophodont forms adapted to open habitats during the Pliocene.  相似文献   

16.
Phylogenetic relationships within the bee family Megachilidae are poorly understood. The monophyly of the subfamily Fideliinae is questionable, the relationships among the tribes and subtribes in the subfamily Megachilinae are unknown, and some extant genera cannot be placed with certainty at the tribal level. Using a cladistic analysis of adult external morphological characters, we explore the relationships of the eight tribes and two subtribes currently recognised in Megachilidae. Our dataset included 80% of the extant generic‐level diversity, representatives of all fossil taxa, and was analysed using parsimony. We employed 200 characters and selected 7 outgroups and 72 ingroup species of 60 genera, plus 7 species of 4 extinct genera from Baltic amber. Our analysis shows that Fideliinae and the tribes Anthidiini and Osmiini of Megachilinae are paraphyletic; it supports the monophyly of Megachilinae, including the extinct taxa, and the sister group relationship of Lithurgini to the remaining megachilines. The Sub‐Saharan genus Aspidosmia, a rare group with a mixture of osmiine and anthidiine features, is herein removed from Anthidiini and placed in its own tribe, Aspidosmiini, new tribe . Protolithurgini is the sister of Lithurgini, both placed herein in the subfamily Lithurginae; the other extinct taxa, Glyptapina and Ctenoplectrellina, are more basally related among Megachilinae than Osmiini, near Aspidosmia, and are herein treated at the tribal level. Noteriades, a genus presently in the Osmiini, is herein transferred to the Megachilini. Thus, we recognise four subfamilies (Fideliinae, Pararhophitinae, Lithurginae and Megachilinae) and nine tribes in Megachilidae. We briefly discuss the evolutionary history and biogeography of the family, present alternative classifications, and provide a revised key to the extant tribes of Megachilinae.  相似文献   

17.
A total of 56 morphological characters were analyzed for 53 cirrospiline species that represent all of the 17 described genera of the tribe. The other taxa of the Eulophinae included in the analysis were six species of six representative genera in the tribe Eulophini, a species of Elasmus (the only genus comprising the tribe Elasmini), and a species of Trichospilus (unplaced). Trichospilus and two of the six genera of Eulophini examined were placed within Cirrospilini. Monophyly of Cirrospilini (when these two genera of Eulophini and Trichospilus are included) and of the cirrospiline genera for which more than one species were examined was supported, but the relationships between the genera were poorly resolved. An exception was Cirrospilus, the largest genus in the Cirrospilini, monophyly of which was not supported to any extent.  相似文献   

18.
The World fauna of the tribe Eupitheciini is the most species-rich in the family Geometridae. This tribe includes about 1900 species (almost 3000 species-group names) from 47 genera; about one third of the genera (15) are monotypic. The generic diversity of Eupitheciini is the highest in the Australian (38 genera, 11 of them endemic) and Oriental regions (32 genera, 4 endemic) and the lowest in the Neotropical Region (possibly one genus only). The faunas of different biogeographic regions can be arranged in following order by their species richness: the Palaearctic (487 species), Oriental (397), Neotropical (346), Australian (251), Afrotropical (198), and Nearctic Regions (166 species). Eupithecia is the most species-rich genus in the family Geometridae and the entire order Lepidoptera, and one of the largest genera in the whole World fauna of insects. The greatest number of species of this genus is recorded in the Palaearctic Region (466 species), where Eupithecia accounts for about 95% of the tribe Eupitheciini. The mainland of the Oriental Region (especially the Himalayas) is also very species-rich; however the proportion of the Eupithecia representatives decreases towards Malaysia, Sundaland, and the Australian Region (about 2% of the tribe). The Eupitheciini faunas have the greatest similarity at the generic level between the Oriental and Australian Regions (the Jaccard and Sørensen coefficient values being 0.62 and 0.77, respectively). The Palaearctic fauna is more similar to the Afrotropical and Oriental faunas at the genus-group level. On the whole, the fauna of the Nearctic Region is similar to that the West Palaearctic, with the exception of the fact that representatives of the genera Gymnoscelis and Chloroclystis are absent in North America, although two endemic genera Nasusina and Prorella are present. At the genus-group level, the Nearctic fauna of Eupitheciini is more similar to the Neotropical (the Jaccard and Sørensen coefficients 0.20 and 0.33, respectively) than to the Palaearctic fauna (0.17 and 0.29). The number of synonymies is very high in the tribe Eupitheciini because of the homogeneity of this group, whose species are difficult to identify without the use of elaborate anatomical techniques. Modern revisions, catalogues, surveys, and atlases on Eupitheciini are absent for many countries and large geographic regions. Revisions of pugs of the tribe Eupitheciini for some biogeographic regions are extremely difficult because of fragmentation of entomological collections including the type specimens of many species-group taxa. A large fraction of synonyms is characteristic of parts of the World with the best known faunas: Europe (64% of synonyms) and North America (39%). On the contrary, the lowest levels of synonymy are typical of the less known faunas of the regions situated at the equatorial latitudes, namely the Neotropical (9%) and Afrotropical (8%) ones.  相似文献   

19.
Phylogenetic analyses of 33 genera of Rubiaceae were performed using morphological and a few chemical characters. Parsimony analysis based on 29 characters resulted in eight equally parsimonious trees, with a consistency index of 0.40 and a retention index of 0.69. These results were compared to a phylogenetic analysis of the same genera based on chloroplast DNA restriction site data. There are discrepancies between the two analyses, but if we consider groupings reflected in the present classification there is much congruency. With the exception of four genera, all the genera are positioned in the same group of taxa in the two analyses. Clades of taxa representing three of the four subfamilies (~the Antirheoideae, ~the Rubioideae, and the ~Ixoroideae) are monophyletic, while the fourth subfamily Cinchonoideae is shown to be paraphyletic. Both analyses support a widened tribe Chiococceae, including the former subtribe Portlandiinae (Condamineeae). Furthermore, in both analyses the tribe Hamelieae is placed outside the subfamily Rubioideae where it is now housed. In search for the most plausible sister group to the Rubiaceae, the genus Cinchona (Rubiaceae) was analyzed together with 13 genera of the Loganiaceae, Nerium (Apocynaceae), and Exacum (Gentianaceae). Cornus (Comaceae), Olea (Oleaceae), and these two genera together were used as outgroups. The analysis, including 25 characters, 16 taxa, and with Cornus and Olea together as an outgroup, resulted in four equally parsimonious trees, with a consistency index of 0.53 and a retention index of 0.62. The non-Loganiaceae taxa Cinchona (Rubiaceae), Nerium (Apocynaceae), and Exacum (Gentianaceae) were all found to have their closest relatives within the Loganiaceae indicating that the Loganiaceae are paraphyletic and ought to be reclassified. As a result of the morphological data the most plausible sister group to the Rubiaceae is the tribe Gelsemieae of the Loganiaceae.  相似文献   

20.
Phylogenetic relationships within the mite Family Phytoseiidae are little known. The presently accepted classification is based on the opinion of specialists, but not on cladistics analysis. The present paper focuses on the tribe Euseiini, containing 271 species, three subtribes and 10 genera. It aims to determine phylogenetic relationships between these taxa and test their monophyly. Molecular analysis combining six markers has been carried out for taxa we succeeded in collecting. Morphological, biogeographic and ecological data have been analysed to determine how these factors can explain the evolutionary relationships emphasized on the phylogenetic tree. Those analyses have been carried out for the taxa available for the molecular study, but also for all species of the tribe. The tribe Euseiini and the two subtribes considered are monophyletic (at least considering the available taxa), supporting the present hypothesis on Phytoseiidae classification. However, the genus Iphiseius seems to not be valid and its unique species is included in the genus Euseius. Clades that were observed within the genus Euseius do not match with recent work on species groups within this genus. It seems that some morphological features such as an insemination apparatus shape and seta length on the dorsal shield constitute some elements explaining the clusters within the genus Euseius. Biogeographic and ecological data analysis led us to hypothesize a west Gondwanian origin of the tribe Euseiini (Africa and Neotropical areas) on Rosids plants (especially of the Orders Malpiphiales and Fabales: subclass Fabidae). Further analyses are still required to (i) take into account more taxa (especially rare ones and species from the Ethiopian part), (ii) to consider more accurate morphological features through more powerful microscopic apparatus, and (iii) to associate a phylogenetic and evolutionary scenario to life traits (pollen feeders).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号