首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
能够耐受纤维素预处理中抑制剂的酿酒酵母对高效、经济生产纤维素乙醇至关重要。利用诱变结合驯化工程选育了一株可耐受复合抑制剂(1.3g/L糠醛、5.3g/L乙酸及1.0g/L苯酚)的工业酿酒酵母YYJ003。在pH 4.0的含有抑制剂的培养基中,耐受菌株乙醇产率是原始菌株的7.8倍,糠醛转化速率提高了5倍。在pH 5.5的复合抑制剂条件下,YYJ003发酵时间(16h)比野生菌株发酵时间(22h)缩短6h。在pH 4.0的未脱毒的玉米秸秆水热法预处理水解液中YYJ003的乙醇产率达到0.50g/g(乙醇/葡萄糖),乙醇产速达到4.16g/(L·h),而对照菌株无乙醇产出。  相似文献   

2.
目前纤维素乙醇成本偏高的根本原因在于没有达到淀粉质乙醇发酵水平的"三高"(高浓度、高转化率和高效率)指标,提高水解糖液浓度和避免发酵抑制物来实现浓醪发酵,是解决问题的关键。文中以常压甘油自催化预处理麦草为底物,尝试采用不同发酵策略,探讨其浓醪发酵产纤维素乙醇的可行性。在优化培养条件(15%底物浓度,加酶量30 FPU/g干底物,温度37℃,接种量10%)下同步糖化发酵72 h,纤维素乙醇产量为31.2 g/L,转化率为73%,发酵效率0.43 g/(L·h);采用半同步(预酶解24 h)糖化发酵72 h,纤维素乙醇浓度达到33.7 g/L,转化率为79%,发酵效率为0.47 g/(L·h),其中(半)同步糖化发酵中90%以上纤维素已被糖化水解用于发酵;采用分批补料式半同步糖化发酵,补料到基质浓度相当于30%,发酵72 h时纤维素乙醇产量达到51.2 g/L,转化率为62%,发酵效率为0.71 g/(L·h)。在所有浓醪发酵中乙酸不足3 g/L,无糠醛和羟甲基糠醛等发酵抑制物。以上结果表明,常压甘油自催化预处理木质纤维素基质适用于纤维素乙醇发酵;分批补料式半同步糖化发酵策略可用来进行浓醪纤维素乙醇发酵;未来工作中提高基质纯度和强化酶解产糖是浓醪纤维素乙醇达到"三高"指标的关键。  相似文献   

3.
木质纤维素预处理过程中产生的有毒副产物严重影响了纤维素乙醇发酵,提高酿酒酵母抑制物耐受性是提高纤维素乙醇发酵效率的有效方法。文中通过过表达LCB4基因,研究了重组菌株S288C-LCB4在乙酸、糠醛和香草醛胁迫下的细胞生长和乙醇发酵性能。结果表明,LCB4过表达菌株在分别含有10 g/L乙酸、1.5 g/L糠醛和1 g/L香草醛的平板中生长均优于对照菌株;在分别含有10 g/L乙酸、3 g/L糠醛和2 g/L香草醛的液体乙醇发酵过程中,重组菌株S288C-LCB4乙醇发酵产率分别为0.85 g/(L·h)、0.76 g/(L·h)和1.12 g/(L·h),比对照菌株提高了34.9%、85.4%和330.8%;且糠醛和香草醛胁迫下发酵时间分别缩短了30 h和44 h。根据发酵终点发酵液代谢物分析发现重组菌株比对照菌株产生了更多甘油、海藻糖和琥珀酸,这些物质有利于增强菌株的抑制物耐受性。综上所述,LCB4基因过表达可显著提高酿酒酵母S288C在乙酸、糠醛和香草醛胁迫下的乙醇发酵性能。  相似文献   

4.
利用五碳糖产高纯度L-乳酸的大肠杆菌基因工程菌的构建   总被引:1,自引:0,他引:1  
[目的]本研究以已敲除多个产杂酸酶基因的大肠杆菌(Escherichia coli)乙醇工程菌SZ470(△frdBC △ldhA △ackA △focA-pflB △pdhR::pflBp6-pflBrbs-aceEF-lpd)为起始菌株,进一步敲除其乙醇脱氢酶(alcohol dehydrogenase,ADH)基因,同时插入带有自身启动子的乳酸片球菌(Pediococcus acidilactici)的L-乳酸脱氢酶(L-lactate dehydrogenase,LLDH)基因,构建可利用五碳糖同型发酵L-乳酸重组大肠杆菌.[方法]利用λ噬菌体Red重组系统构建乙醇脱氢酶基因(adhE)缺失菌株Escherichia coli JH01,并克隆P.acidilactici的ldhL基因,利用染色体插入技术将其整合到JH01基因组,构建产L-乳酸大肠杆菌基因工程菌Escherichia coli JH12,利用无氧发酵15 L发酵罐测定重组菌株L-乳酸产量.[结果]工程菌JH12在15 L发酵罐中以6%的葡萄糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为1.46 g/(L·h),乳酸生产强度为1.14 g/(L·h),乳酸的产量达到41.13 g/L.发酵产物中未检测到琥珀酸、甲酸的生成,仅有少量乙酸生成,L-乳酸纯度达95.69%(L-乳酸在总发酵产物的比率).工程菌JH12以6%的木糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为0.88 g/(L·h),乳酸生产强度为0.60 g/(L·h),乳酸的产量达到34.73 g/L.发酵产物中杂酸少,乳酸的纯度高达98%.[结论]本研究通过基因敲除、染色体插入及无氧进化筛选获得一株产L-乳酸的大肠杆菌工程菌JH12,该菌株不需利用外源质粒,稳定性好,可利用五碳糖进行发酵,发酵产物中杂酸少,L-乳酸的纯度高.本研究为L-乳酸大肠杆菌工程菌的构建提供一定的技术支持,同时也为大肠杆菌L-乳酸的工业化生产提供了参考依据.  相似文献   

5.
木糖的乙醇发酵一直被视为木质纤维原料生物转化产生乙醇的关键因素,休哈塔假丝酵母(Candidashehatae)是木糖发酵性能较好的天然酵母之一。对Candida shehatae HDYXHT-01进行了氦氖激光诱变和NTG诱变,力求选育出发酵木糖产乙醇能力强的菌株。氦氖激光诱变得到的突变株HN-3乙醇产量为17.03g/L,乙醇得率达到0.3393g/g,相比原始菌株提高20.36%。再对HN-3进行NTG诱变,得到的突变株NTG-2乙醇产量为24.20g/L,相比HN-3提高42.10%。进而对NTG-2菌株进行了摇瓶48h连续发酵试验,测得其乙醇产量、木糖利用率、乙醇得率和乙醇产率分别达到24.16g/L,69.26%,0.4360g/g和0.7075g/(L·h)。  相似文献   

6.
为了客观评判耐高温东方伊萨酵母HN-1利用木质纤维素水解液生产燃料乙醇的潜力,本文采用单因素试验和响应面中心组合试验研究了木质纤维素水解液有毒副产物甲酸钠(1.0-5.0 g/L)、乙酸钠(2.5-8.0 g/L)、糠醛(0.2-2.0 g/L)、5-羟甲基糠醛(0.1-1.0 g/L)和香草醛(0.5-2.0 g/L)对其乙醇发酵的影响。结果表明,木质纤维素水解液有毒副产物对东方伊萨酵母HN-1乙醇发酵的影响较小,除添加2 g/L香草醛或添加1 g/L 5-羟甲基糠醛可使乙醇产量分别降低20.38%和11.2%外,其他抑制物的添加对乙醇的生成未有显著影响。但是,当副产物浓度较高时,可以显著抑制菌体生长,添加1-5 g/L甲酸钠、2.5-8.0 g/L乙酸钠、0.4-2 g/L糠醛或0.5-2 g/L香草醛,发酵36 h时菌体细胞干重分别较对照下降了25.04%-37.02%、28.83%-43.82%、20.06%-37.60%和26.39%-52.64%。中心组合试验结果表明各抑制物交互作用对乙醇的生成影响不显著。该研究表明木质纤维素水解液副产物对东方伊萨酵母HN-1乙醇发酵的影响较小,适合用于纤维乙醇发酵。  相似文献   

7.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

8.
乙酸是木质纤维素水解液中含量较多的抑制物,因此提高酿酒酵母菌株对乙酸的耐受性有助于提高纤维素乙醇生产效率。本文中,笔者利用基于CRISPR/Cas9系统的基因组编辑技术过表达了酿酒酵母(Saccharomyces cerevisiae)S288c线粒体核糖体蛋白编码基因MRP8,并比较了过表达MRP8的菌株与对照菌株的生长和发酵特性。平板耐性检测发现,MRP8过表达明显提高了菌株的乙酸胁迫耐受性;乙醇发酵结果表明,在4.8 g/L乙酸胁迫条件下,过表达菌株MRP8-3在51 h消耗全部的葡萄糖,发酵时间缩短了25 h,显著优于相同时间的对照菌株。本研究结果为构建高效纤维素乙醇发酵的酿酒酵母菌株提供了新思路。  相似文献   

9.
利用酿酒酵母NL22对乳清粉进行分步糖化发酵(SHF)和同步糖化发酵(SSF),对其生产燃料乙醇的条件进行比较,同时考察pH、温度和底物浓度对SHF和SSF过程的影响。结果表明:SHF工艺和SSF工艺都可以实现酿酒酵母NL22对高浓度乳清粉的发酵,但SSF工艺可明显缩短生产周期,提高生产效率。在pH 6和30℃的条件下进行补料同步糖化发酵,最终乙醇质量浓度为118.52 g/L,产率为1.74 g/(L·h)。  相似文献   

10.
自絮凝酵母高浓度重复批次乙醇发酵   总被引:3,自引:1,他引:2  
利用发酵性能优良的自絮凝酵母Saccharomyces cerevisiaeflo,研究开发了重复批次高浓度乙醇发酵系统,以节省下游加工过程的能耗。在终点乙醇浓度达到120g/L左右的条件下,发酵系统的乙醇生产强度达到8.2g/(L·h)。然而实验中发现,随着发酵批次的增多,自絮凝酵母沉降性能逐渐下降,从发酵液中沉降分离所需时间相应延长,导致发酵液中高浓度乙醇对酵母的毒害作用加剧,影响其发酵活性和发酵系统运行的稳定性,发酵装置运行11个批次后无法继续运行。实验结果表明,絮凝能力下降导致的酵母絮凝颗粒尺度减小是其沉降性能下降的主要原因。进一步研究发现,酵母的絮凝能力通过再培养可以恢复。在此基础上对发酵系统操作进行改进,每批发酵结束后可控采出一定比例菌体,调节系统的酵母细胞密度和乙醇生产强度以刺激酵母增殖,保持其絮凝能力。在达到相同发酵终点乙醇浓度条件下,虽然发酵系统的乙醇生产强度降低到4.0g/(L·h),但运行10d后絮凝颗粒酵母尺度趋于稳定,继续运行14d,未发现絮凝颗粒酵母尺度继续下降的现象,系统可以稳定运行。  相似文献   

11.
Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy‐demanding growth‐related processes. Studies using genome‐wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.  相似文献   

12.
The metabolic pathway shift between only ethanol consumption to both sugar/ethanol consumption was measured by on-line analysis of respiratory quotient of a Saccharomyces cerevisiae. The experiments were carried out in a fed-batch culture under aerobic conditions. During the transition phase, respiratory quotient (RQ) profile shows that sugar can be metabolized through the fermentative pathway even to values of RQ lower than 1.Revisions requested; Revisions received 9 September 2004  相似文献   

13.
《Fly》2013,7(3):191-199
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.  相似文献   

14.
The metabolic pathway shift between only ethanol consumption to both sugar/ethanol consumption was measured by on-line analysis of respiratory quotient of a Saccharomyces cerevisiae. The experiments were carried out in a fed-batch culture under aerobic conditions. During the transition phase, respiratory quotient (RQ) profile shows that sugar can be metabolized through the fermentative pathway even to values of RQ lower than 1.  相似文献   

15.
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.  相似文献   

16.
C57BL/6J (B6) inbred mice are well known to drink large amounts of alcohol (ethanol) voluntarily and to have only modest ethanol-induced withdrawal under fixed dose conditions. In contrast, DBA/2J (D2) mice are ``teetotallers' and exhibit severe ethanol withdrawal. Speculation that an inverse genetic relationship existed between these two traits was substantiated by meta-analysis of existing data collected in multiple genetic models, including large panels of standard and recombinant inbred strains, their crosses, and selectively bred mouse lines. Despite methodological differences among laboratories in measurement of both preference drinking and withdrawal, a nearly universal finding was that genotypes consuming large amounts of 10% ethanol (calculated as g/kg/day) during two-bottle choice preference drinking were genetically predisposed to low withdrawal scores in independent studies after either acute or chronic ethanol treatment. Conversely, low-drinking genotypes had higher withdrawal severity scores. The genetic relationship appears to be strongest in populations derived from B6 and D2, where data from more genotypes (BXD RIs, B6D2F2s, BXD RI F1s, and B6D2F2-derived selectively bred lines) were available for analysis. Gene mapping studies in these populations identified four chromosome regions [on Chromosomes (Chrs) 1, 2, 4, and 15] where genes might potentially influence both traits. Among genotypes with greater genetic diversity (for example, a panel of standard inbred strains or selectively bred lines), the relationship was less pronounced. Thus, reduced susceptibility to the development of high alcohol use may be supported by increased genetic susceptibility to ethanol withdrawal symptoms. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

17.
The effect of inositol addition on phospholipids, cell growth, ethanol production and ethanol tolerance in a high ethanol producing Saccharomyces sp were studied. Addition of inositol greatly influenced major phospholipid synthesis. With inositol in the fermentation medium, phosphatidylinositol (PI) content was increased, while phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were decreased. However, without inositol in the fermentation medium, PI content dropped down within 24 h, then increased, but was lower than in the presence of inositol. When yeast cells had a higher content of PI, they produced ethanol much more rapidly and tolerated higher concentrations of ethanol. During ethanol shock treatment at 18% (v/v) ethanol, yeast cells with a higher concentration of PI lost their viability much more slowly than those with a lower concentration of PI, indicating that the PI content in these yeast cells can play an important role in ethanol production and ethanol tolerance. Fatty acids and ergosterol were not responsible for high ethanol tolerance and high ethanol production in this yeast strain. Received 22 September 1998/ Accepted in revised form 20 December 1998  相似文献   

18.
19.
In this study, we investigated the effects of aeration on ethanol inhibition and glycerol production during fed-batch ethanol fermentation. When aeration was conducted at 0.13, 0.33, and 0.8 vvm, the ethanol productivity, specific ethanol production rate, and ethanol yield in the presence of greater than 100 g/L of ethanol were higher than when aeration was not conducted. In addition, estimation of the parameters (α and β) in a model equation of ethanol inhibition kinetics indicated that aeration alleviated ethanol inhibition against the specific growth rate and the specific ethanol production rate. Specifically, when aeration was conducted, the glycerol yield and specific glycerol production rate decreased approximately 50 and 70%, respectively. Finally, the results of this study indicated that aeration during fed-batch ethanol fermentation may improve the ethanol concentration in the final culture broth, as well as the ethanol productivity.  相似文献   

20.
Summary In an effort to establish the reasons for the limitations in the final ethanol concentration of Zymomonas mobilis fermentation, the effects of CO2 and ethanol on the fermentation were investigated using continuous and fed-batch cultivation systems. The nucleation and stripping out of CO2 from the fermenter using diatomaceous earth or nitrogen gas or both exhibited a profound effect on the glucose uptake rate during the early stages of fed-batch fermentation, but did not improve final ethanol yields. The addition of ethanol together with above mentioned experiments confirmed conclusively that ethanol inhibition is responsible for the final ethanol concentration obtainable during Zymomonas mobilis fermentation. The final concentration lies between 90 and 110 gl−1 or approximately 12–15% (v/v) ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号