首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The trade‐offs involved in allocating carotenoid pigments and food to healing and regrowing damaged caudal fin tissue v . other functions were examined in guppies Poecilia reticulata , a species in which females prefer males that display larger amounts of carotenoids in their skin. The guppies were derived from four natural populations in Trinidad that differed in resource availability but not predation intensity. Carotenoids, food and site of origin did not affect either absolute or relative fin regrowth, which suggested that fin regeneration in guppies was not constrained by carotenoid availability. It is possible that carotenoid intake influences fin regeneration in the presence of natural stressors such as predators. There was a significant negative interaction between food level in the laboratory and resource availability in the field: males from low‐resource‐availability sites regrew more fin tissue when raised on the high food level, and males from high‐resource‐availability sites regrew more fin tissue when raised on the low food level. The direction of this interaction runs counter to theoretical expectations.  相似文献   

2.
Trinidad guppies (Poecilia reticulata) are distributed along an environmental gradient in carotenoid availability that limits the carotenoid content of the orange spots of males. The amount of synthetic red pteridines (drosopterins) in the orange spots covaries with the carotenoid content, such that the ratio of the two types of pigments is roughly conserved across streams. Carotenoids and drosopterins have different spectral properties and thus the ratio of the two types of pigments affects the shape of the orange spot reflectance spectrum. Geographic conservation of the carotenoid:drosopterin ratio suggests that males may be under selection to maintain a particular hue. We tested this hypothesis by comparing the pigmentation and coloration of guppies from six streams in the field to that of second-generation descendants of the same populations raised on three dietary carotenoid levels in the laboratory. The results show clearly that the geographic variation in drosopterin production is largely genetic and that the hue of the orange spots is conserved among populations in the field, relative to the laboratory diet groups. This is a countergradient pattern because genetic differences between populations in drosopterin production mask the effect of carotenoid availability on the hue of the orange spots. The potential for countergradient sexual selection to contribute to reproductive isolation between populations is discussed.  相似文献   

3.
Food availability in the environment is often low and variable, constraining organisms in their resource allocation to different life‐history traits. For example, variation in food availability is likely to induce condition‐dependent investment in reproduction. Further, diet has been shown to affect ejaculate size, composition and quality. How these effects translate into male reproductive success or change male mating behavior is still largely unknown. Here, we concentrated on the effect of meal size on ejaculate production, male reproductive success and mating behavior in the common bedbug Cimex lectularius. We analyzed the production of sperm and seminal fluid within three different feeding regimes in six different populations. Males receiving large meals produced significantly more sperm and seminal fluid than males receiving small meals or no meals at all. While such condition‐dependent ejaculate production did not affect the number of offspring produced after a single mating, food‐restricted males could perform significantly fewer matings than fully fed males. Therefore, in a multiple mating context food‐restricted males paid a fitness cost and might have to adjust their mating strategy according to the ejaculate available to them. Our results indicate that meal size has no direct effect on ejaculate quality, but food availability forces a condition‐dependent mating rate on males. Environmental variation translating into variation in male reproductive traits reveals that natural selection can interact with sexual selection and shape reproductive traits. As males can modulate their ejaculate size depending on the mating situation, future studies are needed to elucidate whether environmental variation affecting the amount of ejaculate available might induce different mating strategies.  相似文献   

4.
Abstract.— Geographic variation in selection pressures may result in population divergence and speciation, especially if sexual selection varies among populations. Yet spatial variation in targets and intensity of sexual selection is well studied in only a few species. Even more rare are simultaneous studies of multiple populations combining observations from natural settings with controlled behavioral experiments. We investigated how sexual selection varies among populations of the chuckwalla, Sauromalus obesus. Chuckwallas are sexually dimorphic in color, and males vary in coloration among populations. Using field observations and multiple regression techniques, we investigated how sexual selection acts on various male traits in three populations in which males differed in coloration. The influence of sexual selection on male coloration was then investigated in more detail using controlled experiments. Results from field observations indicate that phenotypic selection was acting on territory quality in all three populations. In two populations, selection was also acting either directly or indirectly on male coloration. Male color likely functions as an indicator of food resources to females because male color is based partly on carotenoid pigments. In controlled experiments, significantly more females from these two populations chose males with brighter colors over dull males, a result consistent with studies on carotenoid pigments in other taxa. In a third population, no evidence of sexual selection on male coloration was found in either the field study or controlled experiment. Lack of female preferences for male color in this population, in which chuckwalla densities are low and home ranges are large, may result from searching costs to females.  相似文献   

5.
In many organisms, genotypic selection may be a less effective means of adapting to unpredictable environments than is selection for phenotypic plasticity. To determine whether genotypic selection is important in the evolution of complex life cycles of amphibians that breed in seasonally ephemeral habitats, we examined whether mortality risk from habitat drying in natural populations of small-mouthed salamanders (Ambystoma texanum) corresponded to length of larval period when larvae from the same populations were grown in a common laboratory environment. Comparisons were made at two levels of organization within the species: 1) among geographic races that are under strongly divergent selection regimes associated with the use of pond and stream habitats and 2) among populations within races that use the same types of breeding habitats. Morphological evidence indicates that stream-breeding A. texanum evolved from pond-breeding populations that recently colonized streams. Larvae in streams incur heavy mortality from stream drying, so the upper bound on length of larval period is currently set by the seasonal duration of breeding sites. We hypothesized that selection would reduce length of larval period of pond-breeders that colonize streams if their larval periods are inherently longer than those of stream-breeders. The results of laboratory experiments support this hypothesis. When grown individually in a common environment, larvae from stream populations had significantly shorter larval periods than larvae from pond populations. Within races, however, length of larval period did not correlate significantly with seasonal duration of breeding sites. When males of both races were crossed to a single pond female, offspring of stream males had significantly shorter larval periods than offspring of pond males. Collectively, these data suggest that differences in complex life cycles among pond and stream-breeders are due to genotypic selection related to mortality from habitat drying. Stream larvae in the common-environment experiment were significantly smaller at metamorphosis than pond larvae. Yet, the evolution of metamorphic size cannot be explained readily by direct selection: there are no intuitively obvious advantages of being relatively small at metamorphosis in streams. A positive phenotypic correlation was observed between size at metamorphosis and length of larval period in most laboratory populations. A positive additive genetic correlation between these traits was demonstrated recently in another amphibian. Thus, we suspect that metamorphic size of stream-breeders evolved indirectly as a consequence of selection to shorten length of larval period.  相似文献   

6.
Phenotypic plasticity in sex allocation enables organisms to maximize reproductive success in variable environments, and thus may generate different sex allocation patterns among populations that experience different mating opportunities. In this experiment, I test whether sex allocation is phenotypically plastic in Serranus tortugarum, a simultaneously hermaphroditic fish, by using reciprocal transplants among four reef study sites with populations at high and low densities and significant differences in sex allocation. Fish transplanted across different densities were predicted to alter sex allocation and body size through trade-offs in investments to somatic growth and male and/or female reproduction. As a control for effects of transplanting, I also transplanted fish across study sites with the same densities and marked and returned fish to their original study sites. As predicted, sex allocation and body size shifted significantly for fish transplanted across different densities but not for those transplanted across the same densities. Separate analyses revealed that the treatment effect on sex allocation was driven strongly by a reduction in male investment by fish transplanted from high to low density, and this reduction in male investment was accompanied by an increase in body size. Fish transplanted from low to high density did not appear to change either male or female investments, but they were smaller than transplants from low to low density. A trade-off between male and female function was not evident, but phenotypic plasticity in body size suggested a trade-off between growth and male function when sex allocation is adjusted. Large-scale empirical tests of sex allocation in the field are relatively rare, and the results of this experiment give novel insights into how animals respond to a change in mating opportunities under natural conditions. The effects of logistical problems associated with fieldwork, such as mortality of experimental animals, are considered in the discussion.  相似文献   

7.
The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment.  相似文献   

8.
Dietary carotenoids have been shown to confer immunological benefits to some species of animals in which males also use these pigments to attract mates. Thus, the potential exists for an allocation trade-off between the sexual and immunological functions of carotenoids. Food availability may also influence immune system function. The present study examined the effects of carotenoid and food availability on the resistance of male guppies ( Poecilia reticulata Peters) from four wild populations to the parasite Gyrodactylus turnbulli Harris. Intermediate levels of carotenoid ingestion resulted in the lowest parasite loads, which suggests that carotenoids strengthen parasite resistance at low levels but either benefit parasites or suppress host immunity at high levels. Males raised on the high-food level initially had fewer parasites, suggesting heightened innate immunity relative to males raised on the low-food level. Over the course of the experiment, however, the high-food males supported higher parasite population growth rates than the low-food males. The results obtained emphasize the importance of evaluating the effects of diet on multiple aspects of immune system function, and caution against assuming that positive effects of carotenoids on immunity in one context will automatically translate to other contexts.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 301–309.  相似文献   

9.
Despite the important effects of diet and parasite infectionon male reproductive behavior, few studies have simultaneouslyaddressed their influence on intrasexual selection (male–malecompetition). We examined the synergistic effects of 2 naturallyvarying environmental factors, lifetime food intake and infection,with the monogenean parasite Gyrodactylus turnbulli on the matingtactics and foraging behavior of male guppies (Poecilia reticulata).We allowed fish to interact directly with each other duringobservations and found that unparasitized males won more intermalecontests, courted females more frequently, and received positiveresponses to courtship displays more frequently than males thathad been infected. Infected males devoted more time to foragingand less time to courtship and competition than uninfected males,suggesting that they were energetically limited and could notincrease reproductive effort despite their reduced expectedlifespan. This interpretation was supported by the observationthat greater food intake ameliorated the negative effects ofparasite infection on courtship effort. Our results have bearingon how natural variation in food availability and parasite prevalenceinfluence geographic variation in reproductive behavior.  相似文献   

10.
In invertebrates, the size at maturation is considered to be important for adult fitness. In the wolf spider Hygrolycosa rubrofasciata, however, it is only females that clearly benefit of larger size through augmented egg production, while male mating success is determined by display activity not related to size. Thus, we can expect conflicting growth patterns for the sexes. Additionally, populations differ greatly in adult size: individuals from dry habitats are smaller than those from wet habitats. To study the sexual differences in reaction norms of growth, we reared spiderlings from seven populations at two food levels under controlled laboratory conditions and compared size at sexual maturity. The shapes of reaction norms for adult size differed between the sexes. In females, the reaction norms were parallel, but individuals from dry habitats tended to grow larger at the given food levels. In males, there was a significant interaction between food level and population without any consistent differences between populations. Maturation time was a plastic character in both sexes with no genetic differences among populations. However, females on low food level matured later and significantly smaller in size than those on high food level. Males also matured later on low food level, but they were nearly of the same size as males that received more food. Female growth patterns reflected the strong selection for large size at maturity. However, the patterns for males were highly variable, which could be explained by the weak overall selection on male size, which means that any environmental factors can affect male growing patterns. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
We investigated the occurrence of scramble competition among Colobus vellerosus at Boabeng-Fiema, Ghana. If scramble competition had an impact on feeding efficiency among females, we expected a positive relationship between group size and the proportion of time spent feeding, day journey length, or home range size assuming resource availability is similar among the groups compared. We collected focal data on the feeding behavior of adult females and males over 11 mo (September 2000–August 2001) on 2 study groups: WW (n = 31–33 individuals) and B (n = 8–16 individuals). We also collected ranging data on group movements at half-hour intervals. The large group (WW1) had a significantly longer day journey length than the small group (B1), and females in the large group spent a significantly greater proportion of time feeding in the wet season, a period of low food availability, which suggests it may be a bottleneck period when food resources are scarce and Colobus vellerosus is close to being energy limited. The proximity data suggested females may be able to reduce or adjust for competition by having fewer neighbors when they feed and by spreading out when in a larger group. However, we found no relationship between home range size and group size or that females spent a greater proportion of time feeding than adult males did. Our results highlight the need to factor in differences in food availability when investigating scramble competition. Though equivocal, our results suggest scramble competition occurs among Colobus vellerosus, leading us to suggest there was a match with the potential competitive regime, i.e., food distribution.  相似文献   

12.
M. G. McManus  J. Travis 《Oecologia》1998,114(3):317-325
While the life history traits of animals usually exhibit substantial phenotypic plasticity, such plasticity might reflect either a simple alteration in the level of energy accrual and use or a genuine shift in energy allocation tactics between environmental conditions. The latter would represent genuine plasticity in the life history itself, and thus it is important to distinguish which of these two processes underlies the observed plasticity of life history traits. We investigated this issue by examining the effects of temperature and salinity variation during ontogeny on the allocation of biomass and lipid storage in male sailfin mollies, Poecilia latipinna. We raised males from four natural populations from birth to maturity in controlled laboratory conditions. Neither distinct temperatures (23 or 29°C) nor different salinity regimes (2, 12, or 20 parts per thousand) affected body mass, although males from different populations differed substantially in body mass. However, males raised at the higher temperature had a greater allocation of biomass to testis and a lower allocation to viscera mass. The amount of stored lipid was altered by temperature variation but the direction and magnitude of the effect varied substantially among males from the different populations. Salinity variation affected neither biomass allocation nor the level of lipid storage. These results indicate that male mollies possess a flexible developmental program with respect to temperature that canalizes body size and alters the allocation of biomass among competing demands for reproductive readiness and capacity for energy storage. Received: 25 November 1996 / Accepted: 1 December 1997  相似文献   

13.
Timing of birth and food availability may select for biased offspring sex ratios when they differentially affect the reproductive value of male and female young. Here we show that early hatching date enhances more the probability of male Eurasian kestrels (Falco tinnunculus) to breed as one-year-old than that of females in a Finnish population. This rarely documented phenomenon has been previously observed in a kestrel population in the Netherlands. As kestrels in the Finnish population are migratory, our results refute the hypothesis that early-fledged males would have an advantage for early breeding only in resident populations. Contrary to the predictions, the Finnish population showed no change in brood sex ratio during the breeding season in a long-term data from 8years. As far as we know, this is the first demonstration that biased sex allocation may not occur even when it would appear to be adaptive. This result is different from the Dutch kestrel population, in which the season began with a bias towards males and ended with a bias in favour of females. We suggest that high inter-annual variation in food abundance in Finland might reduce selection for a sex ratio trend.  相似文献   

14.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

15.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

16.
Under the indicator models of mate choice, female preferences evolve to exploit the condition-dependence or "indicator value" of male traits, which in turn may cause these traits to evolve to elaborate extremes. If the indicator value of a male trait changes, the payoff function of the female preference for that trait should change and the preference should evolve to a new optimum. I tested this prediction in the guppy, Poecilia reticulata, a species in which the indicator value of a sexually selected male trait, carotenoid coloration, varies geographically. Carotenoid coloration is thought to be an indicator of foraging ability and health because animals must obtain carotenoid pigments from their diet. The primary dietary source of carotenoids for guppies is unicellular algae, the abundance of which varies among natural streams because of variation in forest canopy cover. Carotenoid availability limits male coloration to a greater extent in streams with greater forest canopy cover. Thus, the indicator value of male coloration covaries positively with canopy cover. To test the indicator model prediction, I measured genetic divergence in the strength of female preferences for carotenoid coloration between high- and low-carotenoid availability streams in each of three river drainages. Second-generation laboratory-born females were given a choice between full-sib males raised on three different dietary levels of carotenoids. For all six populations, male attractiveness (as determined from the responses of females to male courtship displays) increased with dietary carotenoid levels. However, the strength of female preferences differed between populations in the predicted direction in only one of three river drainages. These results fail to support a crucial prediction of the indicator model. More studies taking an interpopulation approach to studying mate preference evolution are needed before the explanatory value of the indicator models can be rigorously assessed.  相似文献   

17.
Age differences in food intake and dietary selection were studied for 8 months among wild male Japanese macaques (Macaca fuscata) under non-predatory situations. Juveniles' feeding time was longer than adult males' in some months, in particular in mating seasons, but did not differ in the other months. Juveniles' feeding speed was slower than that of adult males. However, the age difference in average feeding speed was smaller (90%) than that in expected daily energy expenditure (62–58%). The extent of age difference in feeding speed varied with the food type: the difference was large for fibrous foods, but small for fruits or seeds. As a consequence of the age differences in time spent feeding and feeding speed, the age difference in daily food intake was smaller than expected from metabolic demands. Thus, the hypothesis that juveniles are more vulnerable to starvation than adults was not supported among male Japanese macaques in predator-free Yakushima. Juveniles ate more animal matter, while adult males ate more fibrous foods.  相似文献   

18.
The interspawning interval of female sand gobies, Pomatoschistusminutus, a batch-spawning fish with paternal care, was significantlyshorter when the fish were fed daily than when they were fedevery fourth day. The incubation time of males was not affectedby feeding, nor was the interbrood interval Males have an equalor higher potential reproductive rate than females. As femalesreproduce more slowly when food is scarce than when it is abundant,and males do not, the difference between the sexes in potentialreproductive rate increases when there is food shortage. Becauseof this difference, both male bias in operational sex ratioand intensity in male-male competition for mates are predictedto increase as food availability decreases. Furthermore, a tradeoffbetween current and future reproduction is demonstrated to operateonly when resources are limited, because the correlation betweenegg number of the first and second clutch was positive amonghigh-food females but negative among low-food females. The numberof eggs per female clutch did, however, not differ between treatmentsin first or second dutch. I conclude that operational sex ratioand sexual selection are expected to vary within and betweensand goby populations in accordance with prey availability  相似文献   

19.
Extrapair paternity (EPP) is common among birds, but the reasonswhy it varies within and among species are less clear. In particular,few studies have experimentally examined how food availabilityinfluences paternity and sexual behavior. We manipulated foodsupply in a nest-box population of house sparrows, Passer domesticus,a colonial passerine with extensive biparental care. Duringthree successive breeding attempts, we changed food availabilityat nest sites and examined behavior and genetic parentage. DNAfingerprinting revealed that the level of EPP within broodswas five times lower in pairs nesting at sites continuouslysupplied with extra food. With extra food, mates spent longertime together at the nest, but this was mainly due to a changein female behavior; females but not males increased total nestattendance. Moreover, we found that individual males did notchange within-pair copulation frequency across treatments, suggestingthat our experiment did not influence male control over fertilizationsthrough copulation behavior. Instead, our study shows that ecologicalfactors can have a strong influence on the time budgets of malesand females, which consequently affects the occurrence of EPP.  相似文献   

20.
Energetic constraints on mating performance in the sand goby   总被引:2,自引:0,他引:2  
Lindstrom  Kai 《Behavioral ecology》1998,9(3):297-300
I tested the effect of food addition on reproductive successin male sand gobies, Pomatoschistus minutus, by comparing food-supplementedmales with unfed, control males. The sand goby is a small marinefish with paternal egg care. The males were breeding in artificialnest sites in otherwise natural conditions in the field. I quantifiedenergy reserves by extracting nonpolar lipids. The food supplementimproved the fat reserves of the fed males as compared to unfedmales. Fed males spent more time at the nest, whereas unfedmales spent a much smaller proportion of their time at the nest.As a consequence, fed males mated sooner than unfed males andtended to get more eggs. In the unfed group, mating speed wascorrelated to body length so that bigger males mated sooner.The results suggest that the reproductive success of breedingsand goby males is constrained by the availability of energybut that this constraint is most severe for small males andless severe for bigger males. Energy availability through itseffect on condition will affect the investment in reproductiveeffort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号