首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The goals of this study were to analyze the origin and function of sex differences in the size of canine teeth among Malagasy lemurs and other strepsirhine primates. These analyses allowed me to illuminate interactions between different mechanisms of sexual selection and to elucidate constraints on this sexually-selected trait. In contrast to central predictions of sexual selection theory, polygynous lemurs lack both sexual dimorphism in body size and male social dominance, but the degree of sexual dimorphism in the size of their canines is not known. A comparison of male and female canine size in 31 species of lemurs and lorises revealed significant male-biased canine dimorphism in only 6 of 13 polygynous lemur species. This result is in contrast to predictions of a hypothesis that would explain the lack of size dimorphism in lemurs as a result of high viability costs because canine teeth presumably have low maintenance costs and because they are used as weapons in male-male combat. Moreover, because females had significantly larger maxillary canines than males in only one lemur species, female dominance is not generally based on female physical superiority and selective forces favoring female dominance do not constrain sexual canine dimorphism in the sense of a pleiotropic effect. Contrary to predictions of sexual selection theory, species differences in canine dimorphism across strepsirhines were neither associated with differences in mating system, nor with the potential frequency of aggression. Variation in canine dimorphism was also unrelated to differences in body size, but there were significant differences among families, pointing to strong phylogenetic constraints. This study demonstrated that polygynous lemurs are at most subject to weak intrasexual selection on dental traits used in male combat and that traits thought to be under intense sexual selection are strongly influenced by phylogenetic factors.  相似文献   

2.
Julian C. Lee 《Oecologia》1986,69(2):207-212
Summary This study examines the idea that variation in forelimb length among male anurans influences reproductive success, and does so independently of body size. Analyses of covariance and multivariate analyses of morphological data for five species of explosives breeders are used to test the prediction that for species in which male-male displacements contribute to variation in male reproductive success, amplectant males have longer forelimbs than do non-amplectant males at any body length. The findings for four of five species are in agreement with expectation. The results lend support to the suggestion that for explosive-breeding anurans, the large-male mating advantage may not be a consequence of large body size per se, but rather is due to the fact that large males have longer forelimbs with which to grasp females securely during amplexus and thus resist displacements by competing males.  相似文献   

3.
The maintenance of genetic variation in traits under strong sexual selection is a longstanding problem in evolutionary biology. The genic capture model proposes that this problem can be explained by the evolution of condition dependence in exaggerated male traits. We tested the predictions that condition dependence should be more pronounced in male sexual traits and that genetic variance in expression of these traits should increase under stress as among‐genotype variation in overall condition is exposed. Genetic variance in female and nonsexual traits should, by contrast, be similar across environments as a result of stabilizing selection on trait expression. The relationship between the degree of sexual dimorphism, condition dependence and additive genetic variance (Va) was assessed for two morphological traits (body size and relative fore femur width) affecting male mating success in the black scavenger fly Sepsis punctum (Diptera: Sepsidae) and for development time (a nonsexual trait often correlated with body size). We compared trait expression between the sexes for two cross‐continental populations that differ in degree of sexual dimorphism (Ottawa and Zurich). Condition dependence was indeed most pronounced in males of the strongly dimorphic Zurich population (males larger), and Va was similar for males and females unless the trait was strongly sex specific and condition dependent. Contrary to prediction, however, Va primarily increased under food limitation in both sexes, and genetic variance in fore femur width was low to nil, perhaps depleted by putatively strong sexual selection. Solely for body size of Zurich males, Va increased more in males than females at limited food, in accordance with the predictions of the genic capture model. Overall therefore, quantitative genetic evidence in support of the model was inconsistent and weak at best.  相似文献   

4.
In mammals, species with highly male-biased sexual size dimorphismtend to have high variance in male reproductive success. However,little information is available on patterns of sexual selection,variation in male and female reproductive success, and bodysize and mating success in species with female-biased size dimorphism.We used parentage data from microsatellite DNA loci to examinethese issues in the yellow-pine chipmunk (Tamias amoenus), asmall ground squirrel with female-biased sexual size dimorphism.Chipmunks were monitored over 3 years in the Kananaskis Valley,Alberta, Canada. We found evidence of high levels of multiplepaternity within litters. Variation in male and female reproductivesuccess was equal, and the opportunity for sexual selectionwas only marginally higher in males than females. Male and femalereproductive success both depended on mating success. We foundno evidence that the number of genetic mates a male had dependedon body size. Our results are consistent with a promiscuousmating system in which males and female mate with multiple partners.Low variation in male reproductive success may be a generalfeature of mammalian species in which females are larger thanmales.  相似文献   

5.
Sexual dimorphism, particularly in ornamental traits, is likely to have arisen by sexual selection. Most empirical and theoretical studies of sexual dimorphism assume that ongoing sexual selection also maintains the dimorphism. Over four seasons, I measured the sexual selection acting on three sexually dimorphic attributes (epaulet size, body size, and the blackness of the body plumage) of male red-winged blackbirds and found no consistent directional or stabilizing selection on any of them. Correlational selection was also negligible. I used path analysis to explore potential relationships in more detail but found no direct or indirect effects of male traits on either within- or extrapair success. Males who were resident on the marsh for more years had higher within-pair success, primarily because they spent more of the season on their territory. Experimental manipulations of epaulet size and color and the extent of nonblack feathers in the black body plumage had no detectable effect on the number of within-pair mates, paternity, or the number of extrapair offspring sired in nearby territories. These results combine with data from other studies of red-winged blackbirds to suggest that, despite high variation in male mating success and hence a strong opportunity for sexual selection, several morphological attributes that differ between the sexes and vary among males are not under current sexual selection. The possible explanations for why add complexity to our understanding of how sexual selection operates.  相似文献   

6.
Sexual selection should produce sexual size dimorphism in species where larger members of one sex obtain disproportionately more matings. Recent theory suggests that the degree of sexual size dimorphism depends on physical and temporal constraints involving the operational sex ratio, the potential reproductive rate and the trade-off between current reproductive effort and residual reproductive value. As part of a large-scale experiment on dispersal, we investigated the mating system of common brushtail possums inhabiting old-growth Eucalyptus forest in Australia. Paternity was assigned to 20 of 28 pouch-young (maternity known) genotyped at six microsatellite loci. Male mating success was strongly related to body size and age; male body weight and age being highly correlated. Despite disproportionate mating success favouring larger males, sexual size dimorphism was only apparent among older animals. Trapping and telemetry indicated that the operational sex ratio was effectively 1 : 1 and the potential reproductive rate of males was at most four times that of females. Being larger appeared to entail significant survival costs because males 'died-off' at the age at which sexual size dimorphism became apparent (8-9 years). Male and female home ranges were the same size and males appeared to be as sedentary as females. Moreover, longevity appears to be only slightly less important to male reproductive success than it is to females. It is suggested that a sedentary lifestyle and longevity are the key elements constraining selection for greater sexual size dimorphism in this 'model' medium-sized Australian marsupial herbivore.  相似文献   

7.
本研究以黑眶蟾蜍(Duttaphrynus melanostictus)为研究对象,通过对比黑眶蟾蜍抱对个体的体长、头长、头宽、眼间距、鼓膜径、耳后腺长、眼径、前臂及手长、前肢长以及后肢长等形态特征,分析雌性黑眶蟾蜍繁殖输出与其体型的关系,探究黑眶蟾蜍两性异形模式及其与雌性生育力的关系;同时通过对配对个体形态学特征的相关性分析探究了黑眶蟾蜍的配对模式。结果表明,黑眶蟾蜍雌性体长和体重显著大于雄体;两性的所有局部形态特征均与体长成正相关;去除体长因素影响后,雄性头长以及后肢长均明显大于雌性,其余局部形态特征两性间则皆无显著差异。雌体的窝卵重、窝卵数均与其体长和体重成正相关关系。雌性成体的前肢长与抱对雄性成体的前肢长之间呈显著正相关,其余形态特征两性间均无相关性。研究表明,生育力选择是导致黑眶蟾蜍两性异形的重要驱动力;黑眶蟾蜍的选型配对模式未表现在个体大小上,而是体现在局部特征(前肢长),这不仅为揭示两栖类配对模式的普遍性提供了参考,还表明对两栖类选型配对的研究应以多个性状为对象。  相似文献   

8.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

9.
In many anurans, the forelimb muscles of males are used to grasp females and are often heavier than those of females despite the larger female body size. Such sexual dimorphism in forelimb musculature is thought to result from sexual selection. In addition, the hindlimbs of frogs and toads play an important role in the reproductive process as amplectant males can expel rivals with robust hindlimbs through kicking. In this study, the sexual dimorphism in dry mass for six hindlimb muscles of the Asiatic toad(Bufo gargarizans) was investigated. The results showed that, when controlled for body size, the hindlimb muscle mass of males significantly exceeded that of females for every muscle. The hindlimb muscle mass of amplectant males was also significantly larger than that of non-amplectant males. These results suggested that if strong hindlimb muscles could improve mating success of males, sexual selection would promote the evolution of dimorphism in this character.  相似文献   

10.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

11.
Food availability in the environment is often low and variable, constraining organisms in their resource allocation to different life‐history traits. For example, variation in food availability is likely to induce condition‐dependent investment in reproduction. Further, diet has been shown to affect ejaculate size, composition and quality. How these effects translate into male reproductive success or change male mating behavior is still largely unknown. Here, we concentrated on the effect of meal size on ejaculate production, male reproductive success and mating behavior in the common bedbug Cimex lectularius. We analyzed the production of sperm and seminal fluid within three different feeding regimes in six different populations. Males receiving large meals produced significantly more sperm and seminal fluid than males receiving small meals or no meals at all. While such condition‐dependent ejaculate production did not affect the number of offspring produced after a single mating, food‐restricted males could perform significantly fewer matings than fully fed males. Therefore, in a multiple mating context food‐restricted males paid a fitness cost and might have to adjust their mating strategy according to the ejaculate available to them. Our results indicate that meal size has no direct effect on ejaculate quality, but food availability forces a condition‐dependent mating rate on males. Environmental variation translating into variation in male reproductive traits reveals that natural selection can interact with sexual selection and shape reproductive traits. As males can modulate their ejaculate size depending on the mating situation, future studies are needed to elucidate whether environmental variation affecting the amount of ejaculate available might induce different mating strategies.  相似文献   

12.
Exaggerated tail feathers of birds constitute a standard exampleof evolution of extravagant characters due to sexual selection.Such secondary sexual traits are assumed to be costly to produceand maintain, and they usually are accompanied by morphologicaladaptations that tend to reduce their costs. The aerodynamiccosts for male barn swallows Hirundo rustica of having longtails were quantified using aerodynamics theory applied to morphologicaldata from seven European populations. Latitudinal differencesin tail length were positively correlated with differences inflight costs predicted by aerodynamics theory. A positive relationshipbetween aerodynamic costs of long tails and the degree of sexualsize dimorphism was found among populations. Latitudinal differencesin foraging costs may result in tail length being relativelysimilar in males and females in southern populations, whereasthe low foraging costs for males in northern populations mayallow them to cope with higher aerodynamic costs, giving riseto large sexual size dimorphism. Enlargement of wingspan inmales can alleviate but not eliminate the costs of tail exaggeration,and therefore differences in aerodynamic costs of male ornamentswere maintained among populations. Sexual size dimorphism in thebarn swallow arises as a consequence of latitudinal differencesin the advantages of sexual selection for males and the costsof long tails for males and females.  相似文献   

13.
1. Male-biased sexual size dimorphism (SSD) in mammals has been explained by sexual selection favouring large, competitive males. However, new research has identified other potential factors leading to SSD. The aim of this review is to evaluate current research on the causes of SSD in mammals and to investigate some consequences of SSD, including costs to the larger sex and sexual segregation. 2. While larger males appear to gain reproductive benefits from their size, studies have also identified alternative mating strategies, unexpected variance in mating success and found no clear relationship between degree of polygyny and dimorphism. This implies that sexual selection is unlikely to be the single selective force directing SSD. 3. Latitude seems to influence SSD primarily through variation in overall body size and seasonal food availability, which affect potential for polygyny. Likewise, population density influences resource availability and evidence suggests that food scarcity differentially constrains the growth of the sexes. Diverging growth patterns between the sexes appear to be the primary physiological mechanism leading to SSD. 4. Female-biased dimorphism is most adequately explained by reduced male–male competition resulting in a decrease in male size. Female–female competition for dominance and resources, including mates, may also select for increased female size. 5. Most studies found that sexual segregation arises through asynchrony of activity budgets between the sexes. The larger sex can suffer sex-biased mortality through increased parasite load, selective predation and the difficulty associated with sustaining a larger body size under conditions of resource scarcity. 6. None of the variables considered here appears to contribute a disproportionate amount to SSD in mammals. Several promising avenues of research are currently overlooked and long-term studies, which have previously been biased toward ungulates, should be carried out on a variety of taxa.  相似文献   

14.
In insects, a sexual size dimorphism commonly occurs, with larger females. However, as a deviation from this general rule, larger males are found in some species. In these species often sexual selection for large males has been presumed. The spittlebug Cercopis sanguinolenta exhibits a distinct sexual size dimorphism with larger males. Mating behaviour was studied in a field population in respect to mating success of males and females. The aim of this study was to examine the mechanisms that lead to the observed non-random mating pattern. The results showed a mating pattern without size-assortative mating. A correlation was found between mating success and body size in males. In females no such correlation was found. The mobility of males depends on their body size and mobility is high only when females are present. However, in an analysis of covariance it was found that male mating success is not correlated with mobility, when controlled for body size. The mating system of the spittlebug was classified as scramble competition polygyny. Electronic Publication  相似文献   

15.
Studies of phenotypic selection in natural populations often concentrate only on short time periods and do not quantify selection intensities. We quantified temporal and microspatial variation in the intensities of natural and sexual selection for body size in the yellow dung fly over 2 years. Female fecundity selection intensity remained approximately constant over the season with an overall mean ± SE of 0.187 ± 0.014. Selection intensity for male reproductive success, defined as eggs obtained by mating males, did not differ from zero, indicating there was no assortative mating by size. Sexual selection intensity for male mating success favouring large males was variable but overall strong in the two years (0.499 ± 0.053 and 0.510 ± 0.051). As theoretically expected for male–male competition, sexual selection intensity increased with competitor density and reached an asymptote at about 250 males per pat; it also decreased with time in spring and increased again in autumn as a function of density. Small males had the best chance of obtaining a female at very low male densities. Greater selection intensity for large size in males than females is consistent with, and might be responsible for, the observed sexual size dimorphism in this species, as males are larger. The seasonal pattern of mean male body size (smallest at the beginning and end of the season) most likely reflects mere environmental (primarily temperature) influences on phenotypic size.  相似文献   

16.
Nysius huttoni White is a polygamous bug, endemic to New Zealand, and an important pest of wheat and brassicas. This bug has a female-biased sexual size dimorphism but relative to body length, males have longer antennae, suggesting that the allometric scales of antennal–body relationships may be highly selective in sexual selection. Body weight and most morphometric traits measured have no effect on mating success of either sex. Males significantly preferred mating with females having thicker abdomens, more mature eggs, and longer ovipositors. This result suggests that males may select their mates on the basis of immediate reproductive benefit: fertilizing more eggs and ensuring better survival of these eggs. Males with large genital structures have mating advantages over those with small ones, suggesting that precopulation sexual selection in this species act on male genital traits rather than body weight and nonsexual traits. Finally, females significantly preferred males with greater slopes for the antennal-body relationship for mating. The allometry in the male antennal length may be an indicator of male reproductive fitness.  相似文献   

17.
Little is known about the importance of trade-offs between ageing and other life history traits, or the effects of ageing on sexual selection, particularly in wild populations suffering high extrinsic mortality rates. Life history theory suggests that trade-offs between reproduction and somatic maintenance may constrain individuals with higher initial reproductive rates to deteriorate more rapidly, resulting in reduced sexual selection strength. However, this trade-off may be masked by increased condition dependence of reproductive effort in older individuals. We tested for this trade-off in males in a wild population of antler flies (Protopiophila litigata). High mating rate was associated with reduced longevity, as a result of increased short-term mortality risk or accelerated ageing in traits affecting viability. In contrast, large body size was associated with accelerated ageing in traits affecting mating success, resulting in reduced sexual selection for large body size. Thus, ageing can affect sexual selection and evolution in wild populations.  相似文献   

18.
Females may use condition-dependent sexual traits as reliable cues of male “quality” if the costs of the expression of such traits vary with male “quality”, and if there is positive genetic correlation between male traits and condition. However, there are multiple ways of measuring the changes in body condition which reflect physiological costs meaning that the multifaceted nature of the physiological costs associated with the expression of sexual traits has rarely been thoroughly examined. In the lekking black grouse (Tetrao tetrix), mating success is highly skewed towards males defending central territories and having high survival rates to the following year, but the mechanisms underpinning such superior performance remain unclear. In this study, we quantified the changes in five measures of body condition before and after the mating season and related these changes to male lek performance (fighting rate, territory centrality and mating success) to understand the physiological costs of male reproductive effort. Between the two capture sessions, male body mass decreased significantly, blood parasite counts and plasma carotenoid concentration increased substantially while the total immunoglobulin concentration tended to increase. There was no overall impairment of individual body condition as the changes in the five measures of body condition were unrelated. Male fighting rate was unrelated to changes in the condition measures but males losing more body mass defended central territories and had high mating success. Therefore, females preferring central, dominant males may select males better able to afford the energetic costs of lek performance thereby effectively enforcing the honesty of male display.  相似文献   

19.
Microevolutionary studies have demonstrated sexually antagonistic selection on sexual traits, and existing evidence supports a macroevolutionary pattern of sexually antagonistic coevolution. Two current questions are how antagonistic selection within-populations scales to divergence among populations, and to what extent intraspecific divergence matches species-level patterns. To address these questions, we conducted an intraspecific comparative study of sexual armaments and mating behaviors in a water strider (Gerris incognitus) in which male genitals grasp resistant females and female abdominal structures help ward off males. The degree of exaggeration of these armaments coevolves across species. We found a similar strong pattern of antagonistic coevolution among populations, suggesting that sexual conflict drives population differentiation in morphology. Furthermore, relative exaggeration in armaments was closely related to mating outcomes in a common environment. Interestingly, the effect of armaments on mating was mediated by population sexual size dimorphism. When females had a large size advantage, mating activity was low and independent of armaments, but when males had a relative size advantage, mating activity depended on which sex had relatively exaggerated armaments. Thus, a strong signal of sexually antagonistic coevolution is apparent even among populations. These results open opportunities to understand links between sexual arms races, ecological variation, and reproductive isolation.  相似文献   

20.
Sexual size dimorphism is a common phenomenon in the animal kingdom, and its seasonal change has been reported in some species that possess traits dimorphic only in males and specialized for male mating success. However, few studies have examined seasonal change in sexual dimorphism of traits possessed by both sexes. Here, we examined the reproductive biology of the hermit crab Pagurus minutus, at a sandflat in the Waka River estuary, Japan, with special reference to seasonal changes in sexual dimorphism of the large claw (major cheliped) size by conducting population and precopulatory guarding-pair sampling. Previous investigation demonstrated that the major cheliped is used as a weapon, and its size, more than body size, determines the winner in male–male contests of this species. We found ovigerous females from November to April, peaking in January, when 80% of females were ovigerous. Sexual size dimorphism of the major cheliped was observed; the degree of dimorphism increased in the reproductive season, when only males possessed an enlarged major cheliped. In addition, in the reproductive season, precopulatory guarding males had a larger body and larger relative size of the major cheliped than did solitary males, although the major cheliped size in guarding males seemed to reach an upper limit. These results suggest that seasonal change in sexual dimorphism of the major cheliped size in P. minutus strongly reflects sexual selection favoring the development of this natural weaponry, and that the degree of the dimorphism might be limited through natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号