首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. We examined species–environment relationships and community concordance between aquatic bryophytes and insects in boreal springs. We sampled bryophytes (Marchantiophyta and Bryophyta), benthic macroinvertebrates and environmental variables in 138 springs in Finland, spanning a latitudinal gradient of 1000 km. Macroinvertebrates were subdivided into two groups: Ephemeroptera, Plecoptera, Trichoptera and Coleoptera (EPTC taxa) and chironomid midges (Diptera; Chironomidae). Our aim was to test whether EPTC taxa could be used as surrogates in biodiversity surveys and bioassessment for the two less-well known organism groups, chironomids and bryophytes.
2. Bryophyte assemblages were clearly differentiated along gradients in thermal conditions and water chemistry (pH, conductivity). Chironomids and EPTC were also differentiated in relation to thermal conditions and, to a lesser extent, physical habitat variables, but were only weakly associated to spring water chemistry. Chironomid and EPTC assemblages were more concordant with each other than with bryophytes, but all concordances were relatively weak.
3. Our results suggest that even if the overall compositional patterns of the three taxonomic groups were significantly concordant, the relative importance of environmental drivers underlying their community compositions differed strongly. The results thus imply that spring bryophytes and insects are relatively poor surrogates for each other. The proportion of spring specialists was highest in bryophytes, promoting their primacy for spring bioassessment and biodiversity conservation. We suggest that adequate variation in water chemistry be assured to protect spring bryophyte biodiversity, whereas preserving the physical variation of springs is more important for macroinvertebrates.  相似文献   

2.
In this study, patterns in the taxonomic richness and composition of the fish fauna inhabiting Cymodocea nodosa seagrass meadows were described across their entire distribution range in the Mediterranean Sea and adjacent Atlantic Ocean. Specifically, the study tested whether there are differences in the composition of fish assemblages between those ecoregions encompassed by the distribution range of C. nodosa, and whether these differences in composition are connected with differences in bioclimatic affinities of the fish faunas. A literature review resulted in a total of 19 studies, containing 22 fish assemblages at 18 locations. The ichthyofauna associated with C. nodosa seagrass meadows comprises 59 families and 188 species. The western Mediterranean (WM) Sea has the highest species richness (87 species). Fish assemblages from the Macaronesia–Canary Islands, the Sahelian Upwelling, South European Atlantic Shelf and the WM differ, in terms of assemblage composition, relative to other ecoregions. In contrast, the composition of the fish fauna from the central and eastern Mediterranean overlaps. There is a significant serial correlation in fish assemblage composition between adjacent ecoregions along the distribution range of C. nodosa. Dissimilarities in assemblage composition are connected with the geographical separation between locations, and the mean minimum annual seawater temperature is the environmental factor that explains most variation in fish assemblage composition.  相似文献   

3.
ABSTRACT: BACKGROUND: The patterns and drivers of species assemblages represent the core of community ecology.We focus on the assemblages of a single family of ubiquitous lotic insects, the Simuliidae(black flies), of which the larvae play a critical role in resource turnover in steams. We useMantel tests and null models to tease out the potential influence of abiotic stream conditions,species interactions, and dispersal on the assemblage patterns of larval black flies over twospatial scales (within and across ecoregions) and two seasons (spring and summer). RESULTS: When stream sites were considered across ecoregions in the spring, stream conditions anddispersal were correlated significantly with species similarity; however, within ecoregions inthe spring, dispersal was important only in the Piedmont and Sandhills and abiotic factorsonly in the Mountains. In contrast, results of the summer analyses within and acrossecoregions were congruent; assemblage similarity was significantly correlated with streamconditions both across and within ecoregions. Null models suggested that patterns of speciessegregation in the spring were consistent with a community structured by competition,whereas patterns in the summer were consistent with species assemblages influenced byabiotic factors. CONCLUSIONS: Species composition of black flies at streams sites is correlated with dispersal factors andstream conditions, but results vary over spatial and temporal scales. Communities of blackflies can be viewed within a metacommunity context; local assemblages are consistent withspecies sorting and mass effects. Given that black flies have a terrestrial stage, with femalesdeciding where to place the eggs, a full understanding of the processes that determine local aquatic assemblages will require integration of the dynamics of the aquatic immature stagesand the terrestrial adults.  相似文献   

4.
Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, USA, to characterize variation of benthic diatom assemblages among and within rivers relative to environmental conditions. Analysis of similarity (ANOSIM) indicated that diatom assemblages were significantly different among all the seven rivers draining different ecoregions. Longitudinal patterns in diatom assemblages showed river-specific features. Bray–Curtis dissimilarity index values did not increase as a function of spatial distance among the sampled reaches within any river but the Malheur. Standardized Mantel r of association between assemblage similarity and spatial distance among sites ranged from a high of 0.69 (Malheur) to a low of 0.18 (Chehalis). In the Malheur River, % monoraphids, nitrogen-tolerant taxa, and beta-mesosaprobous taxa all decreased longitudinally while % motile taxa, especially Nitzschia, showed an opposite trend, reflecting a strong in-stream water quality gradient. Similar longitudinal trends in water quality were observed in other rivers but benthic diatom assemblages showed either weak response patterns or no patterns. Our study indicated that benthic diatom assemblages can clearly reflect among-river factors. The relationships between benthic diatom assemblages and water quality within each river may depend on the strength of the water quality gradients, interactive effects of water quality and habitat conditions, and diatom sampling design.  相似文献   

5.
Diatoms, chrysophyte scales and cysts, and the siliceous plates of thecoamoebae were studied from the surface sediments of 20 freshwater habitats in Fennoscandia The study sites are distributed along a latitudinal transect extending from southern Finland to northern Norway, spanning boreal forest through arctic tundra vegetational zones Diatom assemblages were usually dominated by acidophilic, periphytic members of the genera Achnanthe, Fragilaria and Navicula Marked shifts in diatom assemblage composition were recorded along the latitudinal transect, whereas scaled chrysophytes were rare in all study sites Meanwhile, siliceous protozoa were common, but did not exhibit any noticeable trends in assemblage composition with changing latitude A comparison of the Fennoscandian diatom assemblages with those recorded from freshwater sites near Yellowknife (central Northwest Territories, Canada) revealed similar trends in diatom assemblage composition with changing ecoclimatic zones in both regions Moreover, canonical correspondence analysis showed that diatom assemblages in cold, dilute tundra sites were effectively separated from sites with forested catchments from both the Fennoscandian and Canadian transects The general similarity between the two regions suggests that autecological data and the resulting environmental transfer functions based on diatom assemblages may eventually be joined from North American and European regions  相似文献   

6.
We studied variation in benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics in six springs located in a single groundwater area in south-west Finland. We defined five habitat types in the studied springs according to water flow and benthic substrate characteristicsminerogenic brooks, organogenic brooks, helocrenes, floating moss carpets and limnocrene pools. Most studied invertebrate orders, as well as individual taxa, showed differences in relative abundances between the habitat types, but the most common taxa occurred in all springs and habitat types. The studied macroinvertebrates were most abundant in the moss carpet sites and least abundant in the pool sites, but the difference was not statistically significant. We did not observe significant differences in mean taxonomic richness per sample between habitat classes. The observed taxonomic richness in pooled samples of habitat classes was highest in moss carpet habitat and lowest in pool habitat, and the rarefied richness estimate was lowest in pool habitat. Benthic macrocrustacean and insect assemblages varied more between habitat types than between individual springs. In an Nonmetric Multidimensional Scaling ordination analysis, spring brook sites were separated from the moss carpet and pool sites, whereas helocrene sites were widely scattered among sites in other habitat classes. The strongest ecological gradients were related to water flow and the presence of minerogenic substrate, separating lentic and lotic habitats. Abundances of moss and coarse detritus accounted for most of the within-class variation. We identified several indicator species for minerogenic and organogenic brooks and for moss carpet and pool habitats, but none for the helocrenes. We found several occurrences of two crenobiont insect species considered threatened in Finland. We suggest that combined studies on macroinvertebrate and bryophyte assemblages would be a powerful approach in assessing the biodiversity of springs.  相似文献   

7.
This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). Sample-based species richness was overall low (<1-5 species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m(2) quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m(-2). In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m(2) quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m(-2). Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm assemblages difficult.  相似文献   

8.
Aim We examined the relative contributions of spatial gradients and local environmental conditions to macroinvertebrate assemblages of boreal headwater streams at three hierarchical extents: bioregion, ecoregion and drainage system. We also aimed to identify the environmental variables most strongly related to assemblage structure at each study scale, and to assess how the importance of these variables is related to regional context and spatial structuring at different scales. Location Northern Finland ( 62 – 68° N, 25–32° E). Methods Variation in macroinvertebrate data was partitioned using partial canonical correspondence analysis into components explained by spatial variables (nine terms from the cubic trend surface regression), local environmental variables (15 variables) and spatially structured environmental variation. Results The strength of the relationship between assemblage structure and local environmental variables increased with decreasing spatial extent, whereas assemblage variation related to spatial variables and spatially structured environmental variation showed the opposite pattern. At the largest extents, spatial variation was related to latitudinal gradients, whereas spatial autocorrelation among neighbouring streams was the likely mechanism creating spatial structure within drainage systems. Only stream size and water acidity were consistently important in explaining assemblage structure at all study scales, while the importance of other environmental variables was more context‐dependent. Main conclusions The importance of local environmental factors in explaining macroinvertebrate assemblage structure increases with decreasing spatial extent. This scale‐related pattern is not caused solely by changes in study extent, however, but also by variable sample sizes at different regional extents. The importance of environmental gradients is context‐dependent and few factors are likely to be universally important correlates of macroinvertebrate assemblage structure. Finally, our results suggest that bioassessment should give due attention to spatial structuring of stream assemblages, because important assemblage gradients may not only be related to local factors but also to biogeographical constraints and neighbourhood dispersal processes.  相似文献   

9.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data.  相似文献   

10.
We examined the community-environment relationships of lotic macroinvertebrates in near-pristine headwater streams, and the correlation between patterns in taxonomic and functional structure at two regional extents. The across-ecoregion scale comprised five ecoregions spanning all of Finland, while the within-ecoregion scale comprised of north boreal and middle boreal ecoregions. We expected that taxonomic structure should exhibit stronger relationships than functional structure to spatial gradients, while the reverse should be true for local environmental factors. We found some support for this notion, because spatial variables were marginally more important for taxonomic than functional structure. Furthermore, within the two ecoregions, local environmental variables were slightly more important for functional than taxonomic structure. Geographical location (i.e. spatial variables) was more influential at the across-ecoregions extent than within the two ecoregions. Largely the same local environmental variables accounted for variation in both taxonomic and functional structure, including water pH, nutrients, colour, and stream size. Similar responses to local environmental features likely contributed to the significant correlation between patterns in taxonomic and functional structure. It has been suggested that functional traits may be rather insensitive to natural variation, yet our functional categorization showed distinct variation along local environmental, catchment, and spatial gradients across near-pristine streams. Thus, natural ecological filters should be accounted for prior to the examination of the effects of anthropogenic filters on stream macroinvertebrate community structure.  相似文献   

11.
Aim The aim of this study was to compare diversity patterns of insect communities associated with the wood‐decaying Fomitopsis fungi in north‐east (NE) Asia and Fennoscandia. We hypothesized that the diversity of the fungal–insect communities is greater in NE Asia, because the region was one of the largest refugia of boreal species during the last Pleistocene glaciation. Location This study was conducted in boreal forests in NE People's Republic of China, and in south‐central Finland. Methods Fruiting bodies of three Fomitopsis species were collected from the field in order to rear the insects inhabiting the fruiting bodies. Taxonomic uniqueness, diversity and food web structure of the insect assemblages were analysed using hierarchical cluster analysis, diversity indices and analyses of food web compartmentalization, respectively. Results Contrary to the expectations, the richness of families, genera and species was greater in Finland than in NE China. This applied for the overall Fomitopsis‐associated insect assemblage, as well as for the fungal species separately. The taxonomic composition at the level of families and genera was similar between the two regions. The level of monophagy was higher in Finland and the food web was divided into compartments corresponding to the two Fomitopsis species. Main conclusion The often‐suggested higher diversity in refugial areas does not apply for all taxa in boreal forests, such as fungivorous insects associated with Fomitopsis fungi.  相似文献   

12.
An international effort is underway to establish a representative system of marine protected areas (MPAs) in the Southern Ocean to help provide for the long-term conservation of marine biodiversity in the region. Important to this undertaking is knowledge of the distribution of benthic assemblages. Here, our aim is to identify the areas where benthic marine assemblages are likely to differ from each other in the Southern Ocean including near-shore Antarctica. We achieve this by using a hierarchical spatial classification of ecoregions, bathomes and environmental types. Ecoregions are defined according to available data on biogeographic patterns and environmental drivers on dispersal. Bathomes are identified according to depth strata defined by species distributions. Environmental types are uniquely classified according to the geomorphic features found within the bathomes in each ecoregion. We identified 23 ecoregions and nine bathomes. From a set of 28 types of geomorphic features of the seabed, 562 unique environmental types were classified for the Southern Ocean. We applied the environmental types as surrogates of different assemblages of biodiversity to assess the representativeness of existing MPAs. We found that 12 ecoregions are not represented in MPAs and that no ecoregion has their full range of environmental types represented in MPAs. Current MPA planning processes, if implemented, will substantially increase the representation of environmental types particularly within 8 ecoregions. To meet internationally agreed conservation goals, additional MPAs will be needed. To assist with this process, we identified 107 spatially restricted environmental types, which should be considered for inclusion in future MPAs. Detailed supplementary data including a spatial dataset are provided.  相似文献   

13.
The Galician rias are singular and complex estuarine systems of great economic importance. Seagrasses are key elements of the ecosystem and favor the maintenance of high species diversity in benthic communities. Nevertheless, the ecological role of seagrass meadows in the Galician rias has been only partially assessed. Peracarid crustaceans are an important component of soft-bottom faunas and have great importance for the structure of benthic assemblages. In this work, species diversity, patterns of distribution and seasonal fluctuations of peracarids (Crustacea, Peracarida) are studied in estuarine sediments colonized by two species of Zostera (Z. marina and Z. noltii) at the O Grove inlet (Ría de Arousa, Galicia, NW Iberian Peninsula). The spatial distribution of peracarid assemblages was characterized by high numerical dominances due to a few species, particularly tanaidaceans. The temporal study at a Z. marina meadow showed a strongly seasonal pattern defined by great fluctuations of the amphipod population, the latter being the dominant group in abundance and number of species. The highest numbers of species and individuals were observed in September, with minimum values in March. Analyses pointed out a high correlation among the granulometric features of the studied bottoms and the faunistic attributes. Nevertheless, the presence of the seagrasses should influence in a major way the hydrodynamic and sedimentary features of the habitat and utterly the spatial and temporal patterns observed in the peracarid assemblage in the O Grove inlet.  相似文献   

14.
1. Until recently, the distribution of diatom species assemblages and their attributes (e.g. species richness and evenness) in relation to water depth have been identified but not quantified, especially across several lakes in a region. Here, we examined diatom assemblages in the surface sediment across a water‐depth gradient in eight small, boreal lakes in north‐western Ontario, minimally disturbed by human activities. 2. Surface‐sediment diatom assemblages were collected within each lake along a gentle slope from near‐shore to the centre deep basin of the lake, at a resolution of ~1 m water depth. Analysis of sedimentary samples provided an integrated view of assemblages that were living in the lake over several years and enabled a high‐resolution analysis of many lakes. The study lakes ranged in water chemistry, morphology and size and are located along an east–west transect approximately 250 km long in north‐western Ontario (Canada). 3. The majority of diatom species were distributed along a continuum of depth, with those taxa having similar habitat requirements forming distinct, though overlapping, assemblages. Three major zones of diatom assemblages in each lake were consistently identified: (i) a near‐shore assemblage of Achnanthes (sensu lato), Nitzschia, Cymbella (sensu lato) and other benthic species; (ii) a mid‐depth assemblage of small Fragilaria (sensu lato)/small Aulacoseira and various Navicula taxa; and (iii) a deep‐water assemblage of planktonic origin (mainly Discotella spp.). 4. The depth of the transition between assemblage zones varied between the eight lakes. The boundary between the deep‐water planktonic zone and the mid‐depth benthic zone varied according to water chemistry and was probably related to light attenuation. The boundary was deeper in lakes with the lower dissolved organic carbon and total phosphorus (TP) (i.e. less light attenuation) and vice versa. 5. Generally, species richness, species evenness and turnover rate of species as a function of depth were significantly lower in the planktonic assemblage zone in comparison with the two zones nearer the shore. Reproducibility of species and assemblage distributions across the depth gradient of the lakes illustrated that, despite potential for sediment transport, detailed ecological characterisation of diatom species can be gleaned from sedimentary data. Such data are often lacking, particularly for near‐shore benthic species.  相似文献   

15.
16.
River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley‐scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence‐ and abundance‐based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance‐based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley‐scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley‐scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.  相似文献   

17.
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070–2100) benthic macroinvertebrate assemblages at 239 near‐pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species’ distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate‐induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present‐day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high‐flow seasonality because of their vulnerability to climate change.  相似文献   

18.
An important goal for community ecology is the characterization and prediction of changes in community patterns along environmental gradients. We aimed to identify the major environmental correlates of diatom distribution patterns in boreal running waters. We classified 197 stream sites based on their diatom flora. Direct ordination methods were then used to identify the key environmental determinants of this diatom-based stream typology. Finally, we tested whether a regional classification scheme based on terrestrial landscapes (ecoregions) provides a reasonable framework for a regional grouping of streams based on their diatom flora. Two-way indicator species analysis produced 13 site groups, which were primarily separated by chemical variables, mainly conductivity, total P and water colour. In partial CCA, the environmental and spatial factors accounted for 38% and 24%, respectively, of explained variation in community composition. A high proportion (almost 40%) of variation explained by the combined effect (spatially-structured environmental) indicated that diatom communities of boreal streams incorporate a strong spatial component. At the level of subecoregions, classification strength was almost equally strong for all sites as for near-pristine reference sites only. Procrustes analysis indicated that spatial factors and patterns in diatom community structure were strongly concordant. Our data support the argument that diatom communities are strongly spatially structured, with distinctly different communities in different parts of the country. Because of the strong spatial patterns of community composition, bioassessment programs utilising lotic diatoms would clearly benefit from regional stratification. A combination of regional stratification and the prediction of assemblage structure from local environmental features might provide the most robust framework for diatom-based assessment of the biological integrity of boreal streams.  相似文献   

19.
Relationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5). Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to 1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more in-depth work in the still poorly understood field of biodiversity distribution.  相似文献   

20.
The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号