首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed at collecting background knowledge for chimeric pig production. We analyzed the genetic sex of the chimeric pigs in relation to phenotypic sex as well as to functional germ cell formation. Chimeric pigs were produced by injecting Day 6 or Day 7 inner cell mass (ICM) cells into Day 6 blastocysts. Approximately 20% of the piglets born from the injected blastocysts showed overt coat color chimerism regardless of the embryonic stage of donor cells. The male:female sex ratio was 7:2 and 6:1 in the chimeras derived from Day 6 and Day 7 ICM cells, respectively, showing an obvious bias toward males. When XX donor cells were injected into XY blastocysts at the same embryonic stage, the phenotypic sex of the resulting chimera was male with no germ-line cells formed from the donor cell lineage. On the other hand, when the donor was XY and the recipient blastocyst was XX, the phenotypic sex of the chimera was male, and germ-line cells were derived only from the donor cells. The combination of XY donor cells and XY blastocysts produced some chimeras in which the donor cell lineage did not contribute to germ-line formation even when it appeared in coat color. When the embryonic stage of the donor was advanced by 1 day in the XY-XY combination, 100% of the germ-line cells of the chimeras were derived from the donor cell lineage. These data showed that characteristics of sex differentiation and germ cell formation in chimeric pigs are similar to those in chimeric mice.  相似文献   

2.
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321–337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25–33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ “oogonia” were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the first reported evidence that genetically male avian germ cells can differentiate into functional ova and that genetically female germ cells can differentiate into functional sperm. © 1995 wiley-Liss, Inc.  相似文献   

3.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

4.
We have established an enhanced green fluorescent protein (EGFP) transgenic medaka line that mimics the expression of sox9b/sox9a2 to analyze the morphological reorganization of the gonads and characterize the sox9b-expressing cells during gonadal formation in this fish. After the germ cells have migrated into the gonadal areas, a cluster of EGFP-expressing cells in the single gonadal primordium was found to be separated by the somatic cells along the rostrocaudal axis and form the bilateral lobes. We observed in these transgenic fish that EGFP expression persists only in the somatic cells directly surrounding the germ cells. As sex differentiation proceeds, dmrt1 and foxl2 begin to be expressed in the EGFP-expressing cells in the XY and the XX gonads, respectively. This indicates that the sox9b-expressing cells reorganize into two lobes of the gonad and then differentiate into Sertoli or granulosa cells, as common precursors of the supporting cells. Hence, our sox9b-EGFP medaka system will be useful in future studies of gonadal development.  相似文献   

5.
家兔早期胚胎细胞发育能力的研究   总被引:1,自引:0,他引:1  
The developmental potential of rabbit embryonic cells was studied through making chimera by separate introduction of inner cell mass from 96-h-old p. c., 120-h-old p. c., and 144-h-old p. c. of grey rabbits into 96-h-old p. c. blastocysts of New Zealand white rabbits. A total of five overt chimeras were obtained including two fertile males, two fertile females and one sterile male, from the ICM cells of 96-h-old and 120-h-old embryos but none was obtained from 144-h-old cells. Histological examination of the gonad showed that the sterile chimera derived from 120-h-old ICM cells with an ovotestis on both sides. Follicles and seminiferous tubules developed in the cortex and medulla of the gonad, respectively. Neither of them developed into functional germ cells. Analysis of karyotypes of peripheral blood showed that both XX and XY coexisted in lymphocytes. These results indicated that the sterile male chimera was a XX/XY sex chimera derived from ICM cells of donor and recipients with different sex, so as to the chimera with XX and XY genotypic cells. From the results mentioned above we may conclude that the ICM cells at 120-h-old p. c. are still pluripotential, they can not only participate in development into somatic components but also develop into germ cells. The potential of 144-h-old p. c. ICM cells seems to be rather restricted.  相似文献   

6.
本文利用胚泡注射法制作嵌合体对家兔交配后96,120和144小时的ICM细胞的发育能力进行了研究。供体胚胎取自青紫兰灰免,受体胚胎取自新西兰白兔,结果表明96和120小时供胚的ICM细胞与96小时受胚胚泡组合后均能参与发育,形成嵌合兔,144小时者未获得嵌合体。由于120小时的ICM细胞发育的2只表型为雄性的嵌合兔,其中1只不育,其性腺和外周血核型表明不育兔为xx/xy性嵌合,性腺中有处于不同发育程度的卵巢和精细管,外周血含xx和xy两种核型。本实验结果首次证明家兔交配后120小时胚泡的ICM细胞仍具有参与嵌合体发育的能力。它不仅能参与体细胞的分化,并具有形成生殖细胞的能力。交配后144小时胚泡的ICM细胞其发育能力似乎已发生了局限。  相似文献   

7.
A Onishi  H Mikami 《Jikken dobutsu》1985,34(4):433-437
The reproductive performance of male aggregation chimeric mice was examined. C57BL/6 in equilibrium BALB/c male chimeras and control animals, C57BL/6, BALB/c, and their reciprocal F1 crosses, were mated with ICR females. Of 45 overt chimeras, 13 produced mixed-genotype progenies and were revealed to be XY/XY chimeras. By karyotype analysis 16 of 32 single-genotype progeny chimeras were determined to be XX/XY chimeras, but the remaining single-genotype progeny chimeras showed only XY metaphase plates, so that their chromosomal sex could not be determined. The mean litter size of C57BL/6 was significantly higher than that of BALB/c. In contrast, the birth rate of C57BL/6 was lower than that of BALB/c. XY/XY chimeras showed almost the same performance as C57BL/6 for litter size and as BALB/c for birth rate. There were no significant differences for both traits between the reciprocal F1 crosses and XY/XY chimeras. The mean litter size of XX/XY chimeras was lower than that of XY/XY chimeras and the differences was statistically significant. Some XX/XY chimeras had very small testes, while XY/XY chimeras had normal testes. Such results indicate that the reproductive performance of XX/XY male chimeras is inferior to that of XY/XY males.  相似文献   

8.
To investigate the mechanism of sex determination in the germ line, we analyzed the fate of XY germ cells in ovaries, and the fate of XX germ cells in testes. In ovaries, germ cells developed according to their X:A ratio, i.e., XX cells underwent oogenesis, XY cells formed spermatocytes. In testes, however, XY and XX germ cells entered the spermatogenic pathway. Thus, to determine their sex, the germ cells of Drosophila have cell-autonomous genetic information, and XX cells respond to inductive signals of the soma. Results obtained with amorphic and constitutive mutations of Sxl show that both the genetic and the somatic signals act through Sxl to achieve sex determination in germ cells.  相似文献   

9.
Testicular preparations were obtained from 7 bulls, twins of freemartins, and 1 male marmoset, all proved XX/XY chimaeras. X and Y sex chromosomes were confidently identified in nearly all the 87 spermatogonia at mitotic metaphase and 1052 primary spermatocytes at diakinesis-metaphase examined: no cell was identified as containing two X chromosomes. The germ cell chimaerism previously reported in these species is therefore not confirmed. Cultures grown from presumptive somatic these species is therefore not confirmed. Cultures grown from presumptive somatic cells in the testes of two of the bulls yielded 248 identifiable mitotic spreads, all XY-type; cultures from the gonads of their freemartin twins yielded 442 mitotic spreads, all XX-type. Direct preparations from one freemartin gonad, however, yielded 3 XY mitotic spreads out of 18 examined. The conflicting evidence concerning germ cell chimaerism in cattle and marmosets is discussed, particularly in relation to reports of XX/XY bulls that have sired a great excess of daughters. The possibility that XX germ cells contributed to the functional spermatozoa of these bulls is not favoured by present information, but is not excluded.  相似文献   

10.
It is not known if the male sterility caused by the pleiotropic mutations p6H (pink-eyed 6H) and qk (quaking) is intrinsic or extrinsic to spermatogenic cells. This question was addressed by juxtaposing mutant and normal cells in the testes of chimeric mice and determining whether the mutant germ cells could form functional sperm. Twenty-one male chimeras consisting of normal cells and p6H/p6H or qk/qk cells were analyzed. For each, breeding productivity and testicular and sperm morphology were determined. Karyotypes and isozyme analyses were performed to identify the two cellular components of each chimera. All male chimeras that contained p6H/p6H, XY cells were sterile. Although some chimeras with a qk/qk, XY mutant component were fertile, none produced offspring from the homozygous qk component. Spermatids of the sterile chimeras showed abnormalities characteristic of the mutations. We conclude from this study that the presence of normal XY germ and somatic cells in the testis did not rescue the male sterile phenotype of homozygous p6H or qk XY germ cells. Therefore, the action of these mutant genes in causing sperm abnormalities and sterility is autonomous to the germ cells.  相似文献   

11.
High frequency production of zebrafish germline chimeras was achieved by transplanting ovarian germ cells into sterile Danio hybrid recipients. Ovarian germ cells were obtained from 3-mo-old adult Tg(vasa:DsRed2-vasa);Tg(bactin:EGFP) double transgenic zebrafish by discontinuous Percoll gradient centrifugation. An average of 755 ± 108 DsRed-positive germ cells was recovered from each female. For transplantations, a total of approximately 620 ± 242 EGFP-positive cells of which 12 ± 4.7 were DsRed-positive germ cells were introduced into the abdominal cavity under the swim bladder of 2-wk-old sterile hybrid larvae. Six weeks after transplantation, a total of 10 recipients, obtained from 2 different transplantations, were examined, and 2 individuals (20%) were identified that possessed a large number of DsRed- and EGFP-positive cells in the gonadal region. The transplanted ovarian germ cells successfully colonized the gonads and differentiated into sperm in the male hybrid recipients. Of 67 adult recipients, 12 (18%) male chimeric fish reproduced and generated normal offspring when paired with wild-type zebrafish females. The fertilization efficiency ranged from 23% to 56%. Although the fertile male chimeras were generated by transplantation of ovarian germ cells, the F1 generation produced by the male chimeras contained both male and female progeny, indicating that male sex determination in zebrafish is not controlled by sex chromosome heterogamy. Our findings indicate that a population of ovarian germ cells that are present in the ovary of adult zebrafish can function as germline stem cells, able to proliferate and differentiate into testicular germ cells and functional sperm in male recipients. The high frequency of germline chimera formation achieved with the ovarian germ cells and the convenience of identifying the chimeras in the sterile host background should make this transplantation system useful for performing genetic manipulations in zebrafish.  相似文献   

12.
DMY is the second vertebrate sex-determining gene identified from the fish, Oryzias latipes. In this study, we used two different ways of sex reversal, DMY knock-down and estradiol-17beta (E2) treatment, to determine the possible function of DMY during early gonadal sex differentiation in XY medaka. Our findings revealed that the mitotic and meiotic activities of the germ cells in the 0 day after hatching (dah) DMY knock-down XY larvae were identical to those of the normal XX larvae, suggesting the microenvironment of these XY gonads to be similar to that of the normal XX gonad, where DMY is naturally absent. Conversely, E2 treatment failed to initiate mitosis in the XY gonad, possibly due to an active DMY, even though it could initiate meiosis. Present study is the first to prove that the germ cells in the XY gonad can resume the mitotic activity, if DMY was knocked down.  相似文献   

13.
14.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

15.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

16.
This study was carried out to elucidate whether primordial germ cells, obtained from embryonic blood and transferred into partially sterilized male and female recipient embryos, could differentiate into functional gametes and give rise to viable offspring. Manipulated embryos were cultured until hatching and the chicks were raised until maturity, when they were mated. When the sex of the donor primordial germ cells and the recipient embryo was the same, 15 out of 22 male chimaeric chickens (68.2%) and 10 out of 16 female chimaeric chickens (62.5%) produced donor-derived offspring. When the sex of the donor primordial germ cells and the recipient embryo was different, 4 out of 18 male chimaeric chickens (22.2%) and 2 out of 18 female chimaeric chickens (11.1%) produced donor-derived offspring. The rates of donor-derived offspring from the chimaeric chickens were 0.6-40.0% in male donor and male recipient and 0.4-34.9% in female donor and female recipient. However, the rates of donor-derived offspring from the chimaeric chickens were 0.4-0.9% in male donor and female recipient and 0.1-0.3% in female donor and male recipient. The presence of W chromosome-specific repeating sequences was detected in the sperm samples of male chimaeric chickens produced by transfer of female primordial germ cells. These results indicate that primordial germ cells isolated from embryonic blood can differentiate into functional gametes giving rise to viable offspring in the gonads of opposite-sex recipient embryos and chickens, although the efficiency was very low.  相似文献   

17.
Testicular type Sox9 is the most upstream conserved gene in the sex determining cascade among vertebrate. However, in medaka, only one Sox9 gene was identified as expressed in the ovary; no other Sox9 gene was reported expressed in the testis. We explored the medaka genome and cloned a novel testicular type Sox9 cDNA. Phylogenetic analysis revealed that both our isolated Sox9 and the already reportedly cloned medaka Sox9 belongs zebrafish Sox9a branch. Therefore, we named our gene Sox9a2. Unexpectedly, Sox9a2 mRNA was expressed in somatic cells surrounding germ cells at similar high levels in both sexes during early gonadal sex differentiation. However, at the initial stage of testicular tubules development, the expression of Sox9a2 was maintained only in XY gonads, and was remarkably reduced in XX gonads. These results suggest that Sox9a2 is not involved in early sex determination and differentiation, but is involved in the later development of testicular tubules in medaka.  相似文献   

18.
To evaluate the possible role of germ cells on sex differentiation of the gonads in vertebrates, the teleost fish, medaka ( Oryzias latipes ), was used to generate a gonad without germ cells. The germ cell-deficient medaka reveals multiple effects of germ cells on the process of sex differentiation. The previously isolated mutant medaka, hotei , with the excessive number of germ cells may support the contention that the proliferation of germ cells is related to feminization of the gonad. Futhermore, we show that two modes of proliferation for either maintenance of germ cells or commitment to gametogenesis are important components of the sex differentiation of medaka developing gonads. An intimate cross talk between germ cells and gonadal somatic cells during the sex differentiation will be discussed.  相似文献   

19.
About half of the chimeras produced by aggregation of two mouse embryos are sex chimeras composed of both XX and XY cells. We developed a fast and easy method to identify sex chimeras by using electrophoretic bimorphism of an X-linked enzyme, phosphoglycerate kinase-1 (PGK-1), as a marker. When embryos resulting from the crossing of a Pgk-1b/Pgk-1b female and a Pgk-1a/Y male are aggregated, the genotype of sex chimeras is Pgk-1b/Pgk-1a----Pgk-1b/Y. Most of these were identifiable from the PGK-1 electrophoretic pattern of blood cells (i.e., AB type) and the appearance of genitalia (male type or apparently abnormal). Genotypes of functional sperm in the testes of the male-type sex chimeras were also identifiable from the PGK-1 electrophoretic pattern of progenies. Examination of gonads of the sex chimeras revealed that a considerable proportion was hermaphorditic. With this method, reasonable numbers of male-type sex chimeras and hermaphrodites may be selected and used as material for investigating sexual differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号