首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Obase K  Tamai Y  Yajima T  Miyamoto T 《Mycorrhiza》2007,17(3):209-215
We investigated the association between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi and pioneer woody plant species in areas devastated by the eruption of Mt. Usu, Japan, in 2000. We observed eight woody plant species at the research site, most of which were associated with ECM and/or AM fungi. In particular, dominant woody plant species Populus maximowiczii, Salix hultenii var. angustifolia and Salix sachalinensis were consistently associated with ECM fungi and erratically associated with AM fungi. We found one to six morphotypes in the roots of each ECM host and, on average, two in the roots of each seedling, indicating low ECM fungal diversity. ECM colonization ranged from 17 to 42% of root tips. Using morphotyping and molecular analyses, 15 ECM fungi were identified. ECM fungi differed greatly between hosts. However, Laccaria amethystea, Hebeloma mesophaeum, Thelephora terrestris and other Thelephoraceae had high relative colonization, constituting the majority of the ECM colonization in the roots of each plant species. These ECM fungi may be important for the establishment of pioneer woody plant species and further revegetation at Mt. Usu volcano.  相似文献   

2.
A field survey and a pot culture experiment were conducted to examine the effects of nutrients (N and P) and arbuscular mycorrhizal (AM) fungi on the growth of Salix gracilistyla, a pioneer plant in riparian habitats. The plants growing in the field were colonized by AM and/or ectomycorrhizal fungi. However, the direct effect of AM colonization on seedling growth was not detected in the pot culture experiment. In contrast, N application significantly promoted plant growth, suggesting that the growth of S. gracilistyla seedlings is largely limited by the availability of N in the field.  相似文献   

3.
We examined the mycorrhizal type of 128 plant species in two patches of native vegetation of the Chaco Serrano Woodland, central Argentina, the largest dry forest area in South America. Of the 128 plant species investigated (belonging to 111 genera in 53 families), 114 were colonized by arbuscular mycorrhizal fungi (AM), orchid mycorrhizal associations were present in the five terrestrial orchid species analyzed, one ectomycorrhiza was only present in Salix humboldtiana Willd., and 96 harbored a dark septate endophyte (DSE) association. Co-occurrence of AM and DSE was observed in 88 plant species. We determine morphological types of arbuscular mycorrhizal fungi (Arum, Paris, and intermediate AM structures) and report the mycorrhizal status in 106 new species, 12 of which are endemic to central Argentina and two, Aa achalensis Schltr. and Buddleja cordobensis Griseb., are declared to be vulnerable species. Root colonization in the Chaco Serrano Woodland is widespread and should be considered in revegetation programs due to the deterioration of this particular ecosystem. Considering the predominance of AM and DSE associations and the various potential benefits that these associations may bring to plant establishment, they should receive special attention in conservation and reforestation of these woodlands.  相似文献   

4.
Abstract 1 Eucalypts are an important part of plantation forestry in Asia but, in south China, productivity is very low. This is due to infertile soils and lack of indigenous symbiotic mycorrhizal fungi. The genus Eucalyptus is unusual because it forms both arbuscular (AM) and ectomycorrhizal (ECM) associations. 2 Eucalyptus urophylla saplings were grown with and without AM (Glomus caledonium) and ECM (Laccaria laccata) fungi in a factorial design. Two experiments were performed: one to simulate nursery conditions and the other to simulate the early stages of plantation establishment. Plant growth was measured over 18 weeks and levels of insect attack were recorded. 3 The AM fungus reduced tree growth in the early stages, but the effect appeared to be transient. No effects of ECM were detected on tree growth, but the ectomycorrhiza reduced colonization by the arbuscular mycorrhiza. AM fungi appear to be rapid invaders of the root system, gradually being replaced by ECM. 4 Both fungal types affected levels of damage by insect herbivores. Most importantly, herbivory by the pest insects Anomala cupripes (Coleoptera) and Strepsicrates spp. (Lepidoptera) was decreased by ECM. 5 It is suggested that mycorrhizal effects on eucalypt insects may be determined by carbon allocation within the plant. Future studies of eucalypt mycorrhizas need to take into account the effects of the fungi on foliar‐feeding insects and also the effects of insect herbivory on mycorrhizal establishment.  相似文献   

5.
Distribution of different mycorrhizal classes on Mount Koma, northern Japan   总被引:2,自引:0,他引:2  
Tsuyuzaki S  Hase A  Niinuma H 《Mycorrhiza》2005,15(2):93-100
To investigate the role of mycorrhizae in nutrient-poor primary successional volcanic ecosystems, we surveyed mycorrhizal frequencies on the volcano Mount Koma (42°04N, 140°42E, 1,140 m elevation) in northern Japan. After the 1929 eruptions, plant community development started at the base of the volcano. Ammonia and nitrate levels, along with plant cover, decreased with increasing elevation, whereas phosphorus did not. In total, 305 individuals of 56 seed plant species were investigated in three elevational zones (550–600 m, 650–700 m, and 750–800 m). Five mycorrhizal classes were classified based on morphological traits: ecto- (ECM), arbuscular (AM), arbutoid, ericoid, and orchid mycorrhiza. All plant species were mycorrhizal to at least some extent, with most widespread tree species being heavily ectomycorrhizal. In addition, of 16 tree species collected in all three zones, 6 differed in the frequencies of ECM on roots between elevational zones, and 3 of these 6 species increased in frequency with increasing elevation. These results suggest that ECM colonization in some tree species is related to establishment in nutrient-poor habitats. All species of Ericaceae and Pyrolaceae had ericoid mycorrhizae, and an Orchidaceae species had orchid mycorrhizae. Herbaceous species, except for the low mycorrhizal frequency of Carex oxyandra and two Polygonaceae species, and ericoid and orchid mycorrhizal species, were generally AM. Of herbaceous species, Anaphalis margaritacea var. angustior increased AM frequency and decreased ECM frequency with increasing elevation, and Hieracium umbellatum increased ECM frequency. In total, the establishment of herbaceous species was not sufficiently explained by AM colonization on roots. Tree individuals developed 2–3 classes of mycorrhizae more than herbs at each elevational zone. We conclude that the symbiosis between seed plants and mycorrhizae, ECM in particular, greatly influences plant community structures on Mount Koma. Not only a single mycorrhizal class, but combinations of mycorrhizal classes should be studied to clarify effects on plant community dynamics.  相似文献   

6.
Several fast‐growing and multipurpose trees such as exotic and valuable native species have been widely used in West Africa to reverse the tendency of massive degradation of plant cover and restore soil productivity. Although benefic effects have been reported on soil stabilization, a lack of information about their impact on soil symbiotic microorganisms still remains. This investigation has been carried out in field trees of 28 years old in a forest reserve at Bandia. To determine the mycorrhizal inoculum potential (MIP) of soils, a mycorrhizal bioassay was conducted using seedlings of Zea mays L. Spores concentration, arbuscular mycorrhizal (AM) fungi morphotypes and mycorrhizal colonization of field plants were examined. Results showed that fungal communities were dominated in all samples by the genus Glomus. Nevertheless, the others genera Gigaspora and Scutellospora occurred preferentially out of the plantations. The number and richness of spores as well as the MIP of soils were decreased in the tree plantations. Accordingly, the amount of annual herbaceous plants kept out of the tree plantations was much greater than those under the tree plantations. The colonization was higher in field root systems of herb plants in comparison with that of the tree plants. Comparisons allowed us to conclude that vegetation type modifies the AM fungal communities, and the results suggest further adoption of management practices that could improve or sustain the development of herbaceous layers and thus promote the AM fungal communities.  相似文献   

7.
8.
Gmelina arborea Roxb. (Gmelina, Yemane) is a fast growing tree, native from India and considered as a potentially invasive woody plant in West Africa. Mycorrhizal inoculation of seedlings with Glomus intraradices was performed to study (1) the effect on the growth of G. arborea, (2) the impact on the catabolic diversity of soil microbial communities and (3) the influence on the structure of herbaceous plant species communities in microcosms. Treatments consisted of control plants, pre-planting fertilizer application and arbuscular mycorrhizal (AM) inoculation. After 4 months’ culture in autoclaved soil, G. arborea seedlings were either harvested for growth measurement or transferred into containers filled with the same soil but not sterilized. Other containers were kept without G. arborea seedlings. After 12 months’ further culture, effects of fertilizer amendment and AM inoculation on the growth of G. arborea seedlings were recorded. AM colonization was significantly and positively correlated with plant diversity. The substrate-induced respiration response to carboxylic acids was significantly higher in the absence of G. arborea and in the presence of G. intraradices as compared to the other treatments. The influence of AM symbiosis on plant coexistence and on allelopathic processes of invasive plants are discussed.  相似文献   

9.
Abstract. Question: How does changing resource availability induced by fertilization and defoliation affect seedling establishment and mycorrhizal symbiosis in a subarctic meadow? Location: 610 m a.s.l., Kilpisjärvi (69°03’N, 20°50’E), Finland. Methods: A short‐term full‐factorial experiment was established, with fertilization and defoliation of natural established vegetation as treatments. Seeds of two perennial herbs Solidago virgaurea and Gnaphalium norvegicum were sown in natural vegetation and their germination and growth followed. At the final harvest we measured the response in terms of arbuscular mycorrhizal (AM) colonization, biomass and nitrogen concentration of the seedlings and the established vegetation. Results: Germination rate was negatively affected by defoliation in the unfertilized plots. The shoot biomass of S. virgaurea seedlings was reduced by the defoliation and fertilization treatments, but not affected by their interaction. In G. norvegicum, the germination rate and the seedling shoot biomass were negatively correlated with moss biomass in the plots. In the established plants the arbuscular colonization rate was low and defoliation and fertilization treatments either increased or did not affect the colonization by AM fungi. In the seedlings, the colonization rate by AM fungi was high, but it was not affected by treatments. Both seedlings and established plants were colonized by dark septate fungi. Conclusions: Reduction of plant biomass by herbivores can have different effects on seedling growth in areas of high and low soil nutrient availability. The weak response of AM colonization to defoliation and fertilization suggests that AM symbiosis is not affected by altering plant resource availability under the conditions employed in this study.  相似文献   

10.
Fast growing woody species are increasingly used in vegetation filters for wastewater treatment. Their efficiency in phosphorus (P) removal notably depends on plant uptake and storage in aboveground tissues. In this study, Populus NM5 (P. nigra × P. maximowiczii), Salix miyabeana (SX64) and Salix viminalis (5027) were planted in pots to evaluate the influence of colonization by arbuscular mycorrhizal fungi (AMF) Glomus intraradices on P uptake using two different P concentrations in irrigation water. Based on analysis of the foliar and woody components, our results show that the two treatments (inoculation with G. intaradices and P-irrigation) interact differently with total P content. Foliar P content is principally enhanced by the P-irrigation concentration, whereas the mycorrhizal colonization increases stem P content. In the presence of G. intraradices, both S. miyabeana and S. viminalis showed a 33% increase in stem P content. The latter finding is mainly due to an increase in biomass production, without modification of the P concentration, indicating that AMF associations affect P use efficiency. Thus, using arbuscular mycorrhizal fungi for phytoremediation strategies may increase biomass productivity and hence improve pollutant uptake.  相似文献   

11.
Yamato M  Iwasaki M 《Mycorrhiza》2002,12(6):291-296
Morphological types of arbuscular mycorrhizal (AM) fungi in roots of understorey plants were examined in three different Japanese deciduous broadleaved forests. In total, 43 species belonging to 33 genera from 27 families were examined for the morphological types of AM. The number of flowering plant species having Paris-type AM was greater than those having Arum-type AM in each plot. This tendency was more prominent in herbaceous plants than woody plants with nine species having Paris-type associations among ten herbaceous plant species examined. Therefore, it is suggested from the ecological point of view that Paris-type associations could be advantageous for the herbaceous understorey plants growing slowly in these environments. The influence of plant identity on the morphological types of AM was also discussed by arranging the plants examined with the morphological types in a current plant phylogeny scheme. In this study, some new records on the morphological types of AM in some new plant families were obtained including the first report of a typical Arum-type AM in gymnosperms.  相似文献   

12.
A pot culture experiment was conducted to examine the effects of arbuscular mycorrhizal (AM) fungi and soil developmental stages on the growth and nutrient absorption of pioneer plants growing in the early stage of primary succession on Mt. Fuji. Four herbaceous plants, Polygonum cuspidatum (Polygonaceae), Miscanthus oligostachyus (Gramineae), Aster ageratoides var. ovatus (Compositae), and Hedysarum vicioides (Leguminosae), were grown from seed in soils collected from two different successional stages, bare ground and an herbaceous plant community. Spores of indigenous AM fungi collected from the herbaceous plant community were used as inoculum. The initial colonizer P. cuspidatum showed very low levels of AM colonization (<0.4%), whereas the average AM colonization levels of M. oligostachyus, A. ageratoides var. ovatus, and H. vicioides were within the range of 13–49%. AM fungi had positive effects on the growth and N acquisition of the leguminous species (H. vicioides) irrespective of soil developmental stages. In contrast, AM colonization did not increase the plant dry weight and N content of the non-leguminous species (P. cuspidatum, M. oligostachyus, and A. ageratoides var. ovatus) in both soil developmental stages. A positive effect of AM colonization on P content was observed in M. oligostachyus, A. ageratoides var. ovatus, and H. vicioides only in soil collected from the herbaceous plant community. P. cuspidatum showed no or a negative response to AM colonization in all cases. These results suggest that the effect of AM fungi on plant growth depends more on the plant species than soil developmental stages in the early stage of primary succession in this volcanic area.  相似文献   

13.
Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however, variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM colonization of poplar roots in three 12–15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides × Populus nigra), balsam poplars (Populus maximowiczii × Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides × P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted sites.  相似文献   

14.
Associations between plants and arbuscular mycorrhizal (AM) fungi are widespread and well-studied. Yet little is known about the pattern of association between clonal plants and AM fungi. Here we report on the pattern of mycorrhizal association within the rhizome systems of mayapple, Podophyllum peltatum. Mayapple is a long-lived understory clonal herb that is classified as obligately mycorrhizal. We found that while all mayapple rhizome systems maintained mycorrhizal associations, the percent colonization of roots by AM fungi differed among ramets of different age. The highest concentrations of AM fungi were in the roots of intermediate-aged ramets, while roots beneath the youngest ramet were not colonized. This pattern of ramet age or position-dependent colonization was observed in two separate studies; each conducted in a different year and at a different site. The pattern of AM fungal colonization of mayapple rhizome systems suggests that the mycorrhizal relationship is facultative at the ramet level. This conclusion is reinforced by our observation that augmentation of soil phosphate lowers root colonization by AM fungi. We also found that soil phosphate concentrations were depleted by ca. 1% under the same ramet positions where roots bore the highest AM fungal loads. Three non-exclusive hypotheses are proposed regarding the mechanisms that might cause this developmentally dependent pattern of mycorrhizal association.  相似文献   

15.
Arbuscular mycorrhizal fungi influence the growth, morphology, and fitness of a variety of plant species, but little is known of the arbuscular mycorrhizal (AM) fungal associations of plant species in forest canopies. Plant species' associations with AM fungi are most often elucidated by examining the roots for fungal structures; however, morphological data may provide a limited resolution on a plant's mycorrhizal status. We combined a traditional staining technique with a molecular marker (the 18S ribosomal gene) to determine whether or not a variety of epiphytic bromeliads form arbuscular mycorrhizal fungal associations. Using these methods we show that the epiphytic bromeliad Vriesea werkleana forms arbuscular mycorrhizal fungal associations with members of the genus Glomus. AM fungal sequences of this plant species formed three distinct clades nested within a larger Glomus clade; two of the clades did not group with any previously sequenced lineage of Glomus. Novel clades may represent novel species. Although Vriesea werkleana is associated with multiple AM fungal species, each individual plant is colonized by a single lineage. The combination of morphological and molecular methods provides a practical approach to the characterization of the mycorrhizal status of epiphytic bromeliads, and perhaps other tropical epiphytes.  相似文献   

16.
Revegetation following dam removal projects may depend on recovery of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal communities, which perform valuable ecosystem functions. This study assessed the availability and function of AM and EM fungi for plants colonizing dewatered reservoirs following a dam removal project on the Elwha River, Olympic Peninsula, Washington, United States. Availability was assessed via AM fungal spore density in soils and EM root tip colonization of Salix sitchensis (Sitka willow) in an observational field study. The effect of mycorrhizal fungi from 4 sources (reservoir soils, commercial inoculum, and 2 mature plant community soils) on growth and nutrient status of S. sitchensis was quantified in a greenhouse study. AM fungal spores and EM root tips were present in all field samples. In the greenhouse, plants receiving reservoir soil inoculum had only incipient mantle formation, while plants receiving inoculum from mature plant communities had fully formed EM root tips. EM formation corresponded with alleviation of phosphorus stress in plants (lower shoot nitrogen:phosphorus). Thus, revegetating plants have access to AM and EM fungi following dam removal, and EM formation may be especially important for plant P uptake in reservoir soils. However, availability of mycorrhizal fungi declines with distance from established plant communities. Furthermore, EM fungal communities in recently dewatered reservoirs may not be as effective at forming beneficial mycorrhizae as those from mature plant communities. Whole soil inoculum from mature plant communities may be important for the success of revegetating plants and recovery of mycorrhizal fungal communities.  相似文献   

17.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

18.
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg?1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.  相似文献   

19.
Colonization of Salix humboldtiana (Salicaceae) by ectomycorrhizae (ECM), arbuscular mycorrhizae (AM), and dark-septate endophytic (DSE) fungi was studied throughout autumn on two riparian populations in central Argentina. AM and DSE infection on roots ranged from 0% to 17% and from 2% to 20% respectively, whereas ECM colonization was higher, varying between 33% and 99% for both sites. Seven ECM morphotypes were found on S. humboldtiana roots. The nuclear rDNA internal transcriber spacer (ITS) region from the ectomycorrhizal root tips was amplified using ITS-1F and ITS-4 primers. Two of the seven ECM types were identified by searching GenBank blasts: one attributed to the genus Tomentella (Thelephoraceae) and the second most closely matched to Inocybe sp. (Cortinariaceae). The ECM colonization varied among sampling dates and sites, whereas AM and DSE colonization varied only among sampling dates. Diversity values for the ECM morphotype were not significantly different for autumn months or among the two sites. Positive correlations were found between Inocybe sp. and sites and between Inocybe sp., Tomentella sp., morphotypes III, IV, and VI, and sampling dates. This article provides the first documented evidence of co-occurrence of ECM, AM, and DSE in S. humboldtiana.  相似文献   

20.
Our goal was to evaluate the mycorrhizal colonization, as well as the density of arbuscular mycorrhizal (AM) fungal spores, in Eucalyptus camaldulensis and E. grandis monocultures at 2 years in a semiarid part of Brazil. Soil and root samples were collected in 2 consecutive years. Eucalyptus camaldulensis showed varied AM colonization level according to season of sampling, and Glomus was dominant in spore numbers. Eucalyptus grandis showed dominant ectomycorrhizal (ECM) colonization and lower AM fungal spore density. Overall results suggest that E. camaldulensis has both AM and ECM dependencies, whereas E. grandis is solely ECM dependent in the monocultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号