首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Changes in the steady-state mRNA levels of the gene encoding cytochrome c were analyzed after feeding carbohydrates to detached leaves of sunflower (Helianthus annuus L.). Glucose, fructose and sucrose promoted an increase in mRNA levels, which was not observed with mannitol and other metabolites such as glycerol or acetate. The increase in mRNA levels was proportionally higher in dark-treated leaves. The effect of sugars could be mimicked by compounds that are phosphorylated by hexokinase but not further metabolized, such as mannose or 2-deoxyglucose. This may indicate that hexokinase is involved in the induction of the cytochrome c gene by carbohydrates. The presence of potassium phosphate had no significant effect on the induction by sugars. Our results indicate that the modulation of the expression of nuclear genes encoding mitochondrial components should be added to the list of known effects of carbohydrates on respiration. Received: 5 February 1998 / Accepted: 22 April 1998  相似文献   

3.
4.
Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite‐ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host‐associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep‐sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao‐maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao‐typical absorbance maximum at 460 nm. In most cases, the εHao‐encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane‐bound HaoCA assembly reminiscent of the menaquinol‐oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a ‘missing link’ in the evolution of NrfA and Hao enzymes.  相似文献   

5.
6.
7.
Cytochrome c maturation (ccm) in many bacteria, archaea and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches haem covalently to two cysteines (of Cys‐Xxx‐Xxx‐Cys‐His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of haem to the apocytochrome; namely, that it is the synthetase. However, holocytochrome c synthetase activity has not been directly demonstrated for CcmFH. We report formation of holocytochromes c by CcmFH and CcmG, a periplasmic thioredoxin, independent of CcmABCDE (we term this activity CcmFGH‐only). Cytochrome c produced in the absence of CcmABCDE is indistinguishable from cytochrome c produced by the full system I, with a cleaved signal sequence and two covalent bonds to haem. We engineered increased cytochrome c production by CcmFGH‐only, with yields approaching those from the full system I. Three conserved histidines in CcmF (TM‐His1, TM‐His2 and P‐His1) are required for activity, as are the conserved cysteine pairs in CcmG and CcmH. Our findings establish that CcmFH is the system I holocytochrome c synthetase. Although we discuss why this engineering would likely not replace the need for CcmABCDE in nature, these results provide unique mechanistic and evolutionary insights into cytochrome c biosynthesis.  相似文献   

8.
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild‐type but with the same number of leaves. CYTc‐deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc‐deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild‐type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone‐dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.  相似文献   

9.
10.
11.
12.
13.
The microaerophilic food‐borne pathogen Campylobacter jejuni uses complex cytochrome‐rich respiratory chains for growth and host colonisation. Cytochrome c biogenesis requires haem ligation to reduced apocytochrome cysteines, catalysed by the cytochrome c synthase, CcsBA. While ccsBA could not be deleted, we showed that the thiol reductase DsbD and the CcsX homologue Cj1207 are involved in, but not essential for, cytochromes c biogenesis. Mutant phenotypic analyses and biochemical studies with purified proteins revealed that the mono‐haem c‐type cytochromes Cj1153 (CccA) and Cj1020 (CccB) and the di‐haem Cj0037 (CccC) are electron donors to the cb‐oxidase (CcoNOQP), with CccC being more efficient than CccA. Remarkably, cccA deletion or site‐directed mutagenesis resulted in an almost complete loss of all other c‐type cytochromes. Cytochrome c structural and biogenesis genes were still transcribed in the cccA deletion mutant and the quinol oxidase genes (cioAB) were up‐regulated. Cytochrome c production could be rescued in this mutant by growth with exogenous dithiothreitol or L‐cysteine, suggesting that in the absence of CccA, apocytochrome c haem binding motifs become oxidised, preventing haem attachment. Our results identify CccA, the most abundant periplasmic c‐type cytochrome in C. jejuni, as a novel and unexpected protein required for cytochrome c biogenesis in this pathogen.  相似文献   

14.
《FEMS microbiology letters》1998,167(2):171-177
The sequence of the cyc1 gene encoding the Thiobacillus ferrooxidans ATCC 33020 c552 cytochrome, shows that this cytochrome is a 21-kDa periplasmic c4-type cytochrome containing two similar monohaem domains. The kinetics of reduction and the fact that cytochromes c4 are considered to be physiological electron donors of cytochrome oxidases suggest that the last steps of the iron respiratory chain are: rusticyanin→cytochrome c4→cytochrome oxidase. In Thiobacillus ferrooxidans, cyc1 is co-transcribed with the cyc2 gene, encoding a high-molecular-mass monohaem cytochrome c. This suggests that the cytochromes encoded by these genes belong to the same electron transfer chain.  相似文献   

15.
The sulfate-reducing bacterium, Desulfomonile tiedjei DCB-1, conserves energy for growth from reductive dechlorination of 3-chlorobenzoate via halorespiration. To understand this respiratory process better, we examined electron carriers from different cellular compartments of D. tiedjei. A 50-kDa cytochrome from the membrane fraction was found to be co-induced with dechlorination activity. This inducible cytochrome was extracted from the membrane fractions by Tris-HCl buffer containing ammonium sulfate at 35% saturation and was purified to electrophoretic homogeneity by phenyl superose, Mono Q, and hydroxyapatite chromatography. The purified cytochrome had a high-spin absorption spectrum. In a pH titration experiment, the absorption spectrum of the inducible cytochrome shifted to low spin at pH 13.2. The midpoint potential of the inducible cytochrome at pH 7.0 was –342 mV. The NH2-terminal amino acid sequence of the inducible cytochrome was determined and was used to obtain inverse PCR products containing the sequence of the gene encoding the inducible cytochrome. The ORF was 1398 bp and coded for a protein of 52.6 kDa. Two c-type heme-binding domains were identified in the COOH-terminal half of the protein. A putative signal peptide of 26 residues was found at the NH2-terminal end. The protein sequence was not found to have substantial sequence similarity to any other sequence in GenBank. We conclude that this is a c-type cytochrome substantially different from previously characterized c-type cytochromes. Received: 30 May 1997 / Accepted: 29 July 1997  相似文献   

16.
《Free radical research》2013,47(4):439-444
Abstract

The peroxidase-type reactivity of cytochrome c is proposed to play a role in free radical production and/or apoptosis. This study describes cytochrome c catalysis of peroxide consumption by ascorbate. Under conditions where the sixth coordination position at the cytochrome c heme iron becomes more accessible for exogenous ligands (by carboxymethylation, cardiolipin addition or by partial denaturation with guanidinium hydrochloride) this peroxidase activity is enhanced. A reaction intermediate is detected by stopped-flow UV-vis spectroscopy upon reaction of guanidine-treated cytochrome c with peroxide, which resembles the spectrum of globin Compound II species and is thus proposed to be a ferryl species. The ability of physiological levels of ascorbate (10–60 µM) to interact with this species may have implications for mechanisms of cell signalling or damage that are based on cytochrome c/peroxide interactions.  相似文献   

17.
A single species of tryptophan-59 formylated cytochrome c with a half-reduction potential of 0.085 ± 0.01 V at pH 7.0 was used to study its catalytic and functional properties. The spectral properties of the modified cytochrome show that the 6th ligand position is open to reaction with azide, cyanide, and carbon monoxide. Formylated cytochrome c binds to cytochrome c depleted rat liver and pigeon heart mitochondria with the precise stoichiometry of two modified cytochrome c molecules per molecule of cytochrome a (KD of approx 0.1 μm). Formylated cytochrome c was reducible by ascorbate and was readily oxidized by cytochrome c oxidase. The apparent Km value of the oxidase for the formylated cytochrome c was six times higher than for the native cytochrome and the apparent V was smaller. Formylated cytochrome c does not restore the oxygen uptake in C-depleted mitochondria but inhibits, in a competitive manner, the oxygen uptake induced by the addition of native cytochrome c. Formylated cytochrome c was inactive in the reaction with mitochondrial NADH-cytochrome c reductase but was able to accept electrons through the microsomal NADPH-cytochrome c reductase.  相似文献   

18.
19.
The claim of methane (CH4) formation in plants has caused much controversy and debate within the scientific community over the past 4 years. Here, using both stable isotope and concentration measurements, we demonstrate that CH4 formation occurs in plant cell cultures that were grown in the dark under sterile conditions. Under non‐stress conditions the plant cell cultures produced trace amounts [0.3–0.6 ng g?1 dry weight (DW) h?1] of CH4 but these could be increased by one to two orders of magnitude (up to 12 ng g?1 DW h?1) when sodium azide, a compound known to disrupt electron transport flow at the cytochrome c oxidase (complex IV) in plant mitochondria, was added to the cell cultures. The addition of other electron transport chain (ETC) inhibitors did not result in significant CH4 formation indicating that a site‐specific disturbance of the ETC at complex IV causes CH4 formation in plant cells. Our study is an important first step in providing more information on non‐microbial CH4 formation from living plants particularly under abiotic stress conditions that might affect the electron transport flow at the cytochrome c oxidase in plant mitochondria.  相似文献   

20.
Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild‐type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号