首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Shewanella oneidensis is renowned for its respiratory versatility, which is largely due to abundant c‐type cytochromes. Maturation of these proteins depends on a Ccm system encoded by genes in an unusual chromosomal arrangement, but the detailed mechanism is not understood. In this study, we identify SO0265 as CcmI, an apocytochrome c chaperone that is important and essential for maturation of c‐type cytochromes with the canonical heme binding motif(s) (HBM; CX2CH) and nitrite reductase NrfA carrying a non‐canonical CX2CK motif respectively. We show that the N‐terminal transmembrane segment of CcmI, CcmI‐1, is sufficient for maturation of the former but the entire protein is required for maturation of the latter. Although S. oneidensis possesses a heme lyase, SirEFG, dedicated for non‐canonical HBMs, it is specific for SirA, a sulfite reductase with a CX15CH motif. By presenting evidence that the periplasmic portion of CcmI, CcmI‐2, interacts with NrfA, we suggest that CcmI also takes the role of Escherichia coli NrfG for chaperoning apo‐NrfA for maturation at CX2CK. Moreover, intact CcmI is required for maturation of NrfA, presumably by ensuring that heme attachment at canonical HBMs occurs before apoprotein degradation.  相似文献   

2.
Enzymology and bioenergetics of respiratory nitrite ammonification   总被引:1,自引:0,他引:1  
Nitrite is widely used by bacteria as an electron acceptor under anaerobic conditions. In respiratory nitrite ammonification an electrochemical proton potential across the membrane is generated by electron transport from a non-fermentable substrate like formate or H(2) to nitrite. The corresponding electron transport chain minimally comprises formate dehydrogenase or hydrogenase, a respiratory quinone and cytochrome c nitrite reductase. The catalytic subunit of the latter enzyme (NrfA) catalyzes nitrite reduction to ammonia without liberating intermediate products. This review focuses on recent progress that has been made in understanding the enzymology and bioenergetics of respiratory nitrite ammonification. High-resolution structures of NrfA proteins from different bacteria have been determined, and many nrf operons sequenced, leading to the prediction of electron transfer pathways from the quinone pool to NrfA. Furthermore, the coupled electron transport chain from formate to nitrite of Wolinella succinogenes has been reconstituted by incorporating the purified enzymes into liposomes. The NrfH protein of W. succinogenes, a tetraheme c-type cytochrome of the NapC/NirT family, forms a stable complex with NrfA in the membrane and serves in passing electrons from menaquinol to NrfA. Proteins similar to NrfH are predicted by open reading frames of several bacterial nrf gene clusters. In gamma-proteobacteria, however, NrfH is thought to be replaced by the nrfBCD gene products. The active site heme c group of NrfA proteins from different bacteria is covalently bound via the cysteine residues of a unique CXXCK motif. The lysine residue of this motif serves as an axial ligand to the heme iron thus replacing the conventional histidine residue. The attachment of the lysine-ligated heme group requires specialized proteins in W. succinogenes and Escherichia coli that are encoded by accessory nrf genes. The proteins predicted by these genes are unrelated in the two bacteria but similar to proteins of the respective conventional cytochrome c biogenesis systems.  相似文献   

3.
Cytochrome c552 is the terminal component of the formate-dependent nitrite reduction pathway of Escherichia coli. In addition to four ‘typical’ haem-binding motifs, CXXCH-, characteristic of c-type cytochromes, the N-terminal region of NrfA includes a motif, CWSCK. Peptides generated by digesting the cytochrome from wild-type bacteria with cyanogen bromide followed by trypsin were analysed by on-line HPLC MS/MS in parent scanning mode. A strong signal at mass 619, corresponding to haem, was generated by fragmentation of a peptide of mass 1312 that included the sequence CWSCK. Neither this signal nor the haem-containing peptide of mass 1312 was detected in parallel experiments with cytochrome that had been purified from a transformant unable to synthesize NrfE, NrfF and NrfG: this is consistent with our previous report that NrfE and NrfG (but not NrfF) are essential for formate-dependent nitrite reduction. Redox titrations clearly revealed the presence of high and low mid-point potential redox centres. The best fit to the experimental data is for three n = 1 components with mid-point redox potentials (pH 7.0) of +45 mV (21% of the total absorbance change), ?90 mV (36% of the total) and ?210 mV (43% of the total). Plasmids in which the lysine codon of the cysteine–lysine motif, AAA, was changed to the histidine codon CAT (to create a fifth ‘typical’ haem c-binding motif), or to the isoleucine and leucine codons, ATT and CTT, were unable to transform a Nrf? deletion mutant to Nrf+ or to restore formate-dependent nitrite reduction to the transformants. The presence of a 50 kDa periplasmic c-type cytochrome was confirmed by staining proteins separated by SDS–PAGE for covalently bound haem, but the methyl-viologen-dependent nitrite reductase activities associated with the mutated proteins, although still detectable, were far lower than that of the native protein. The combined data establish not only that there is a haem group bound covalently to the cysteine–lysine motif of cytochrome c552 but also that one or more products of the last three genes of the nrf operon are essential for the haem ligation to this motif.  相似文献   

4.
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.  相似文献   

5.
Melanie Kern 《BBA》2009,1787(6):646-656
Recent phylogenetic analyses have established that the Epsilonproteobacteria form a globally ubiquitous group of ecologically significant organisms that comprises a diverse range of free-living bacteria as well as host-associated organisms like Wolinella succinogenes and pathogenic Campylobacter and Helicobacter species. Many Epsilonproteobacteria reduce nitrate and nitrite and perform either respiratory nitrate ammonification or denitrification. The inventory of epsilonproteobacterial genomes from 21 different species was analysed with respect to key enzymes involved in respiratory nitrogen metabolism. Most ammonifying Epsilonproteobacteria employ two enzymic electron transport systems named Nap (periplasmic nitrate reductase) and Nrf (periplasmic cytochrome c nitrite reductase). The current knowledge on the architecture and function of the corresponding proton motive force-generating respiratory chains using low-potential electron donors are reviewed in this article and the role of membrane-bound quinone/quinol-reactive proteins (NapH and NrfH) that are representative of widespread bacterial electron transport modules is highlighted. Notably, all Epsilonproteobacteria lack a napC gene in their nap gene clusters. Possible roles of the Nap and Nrf systems in anabolism and nitrosative stress defence are also discussed. Free-living denitrifying Epsilonproteobacteria lack the Nrf system but encode cytochrome cd1 nitrite reductase, at least one nitric oxide reductase and a characteristic cytochrome c nitrous oxide reductase system (cNosZ). Interestingly, cNosZ is also found in some ammonifying Epsilonproteobacteria and enables nitrous oxide respiration in W. succinogenes.  相似文献   

6.
To date, six candidate genera of anaerobic ammonium‐oxidizing (anammox) bacteria have been identified, and numerous studies have been conducted to understand their ecophysiology. In this study, we examined the physiological characteristics of an anammox bacterium in the genus ‘Candidatus Jettenia’. Planctomycete KSU‐1 was found to be a mesophilic (20–42.5°C) and neutrophilic (pH 6.5–8.5) bacterium with a maximum growth rate of 0.0020 h?1. Planctomycete KSU‐1 cells showed typical physiological and structural features of anammox bacteria; i.e. 29N2 gas production by coupling of 15NH4+ and 14NO2?, accumulation of hydrazine with the consumption of hydroxylamine and the presence of anammoxosome. In addition, the cells were capable of respiratory ammonification with oxidation of acetate. Notably, the cells contained menaquinone‐7 as a dominant respiratory quinone. Proteomic analysis was performed to examine underlying core metabolisms, and high expressions of hydrazine synthase, hydrazine dehydrogenase, hydroxylamine dehydrogenase, nitrite/nitrate oxidoreductase and carbon monoxide dehydrogenase/acetyl‐CoA synthase were detected. These proteins require iron or copper as a metal cofactor, and both were dominant in planctomycete KSU‐1 cells. On the basis of these experimental results, we proposed the name ‘Ca. Jettenia caeni’ sp. nov. for the bacterial clade of the planctomycete KSU‐1.  相似文献   

7.
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c554; and cycB, cytochrome cm552. The deduced protein sequences of HAO, c554, and cm552 were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes cm552, NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c554 gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c554 gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.  相似文献   

8.
The biogeochemical nitrogen cycle is mediated by many groups of microorganisms that harbour octahaem cytochromes c (OCC). In this study molecular evolutionary analyses and the conservation of predicted functional residues and secondary structure were employed to investigate the descent of OCC proteins related to hydroxylamine oxidoreductase (HAO) and hydrazine oxidoreductase (HZO) from pentahaem cytochrome c nitrite reductase (NrfA). An octahaem cytochrome cnitrite reductase (ONR) was shown to be a possible intermediate in the process. Analysis of genomic neighbourhoods of OCC protein-encoding genes revealed adjacent conserved genes whose products, together with HAO, provide a path of electron transfer to quinone and constitute a functional catabolic module. The latter has evolved more than once under a variety of functional pressures on the catabolic lifestyles of their bacterial hosts. Structurally, the archetypical long helices in the large C-terminal domain of the proteins as well as the distal axial ligands to most haems were highly conserved in NrfA and all descendents. Residues known to be involved in the nitrite reductase activity of NrfA including the 'CxxCK' motif at the catalytic haem, the substrate and Ca binding sites, and the nitrite and ammonium channels were conserved in the eight representatives of ONR. In the latter, a unique cysteine has been inserted above the active site. The 64 other OCC proteins differed from ONR by the absence of the 'CxxCK' motif, the channel residues and most of the Ca-binding residues and the conserved presence of an 'Asp-His' pair inserted above the active site as well as the tyrosine that forms an intersubunit cross-link to the catalytic haem of HAO. Our proposed scenario of evolution of OCC proteins in the HAO family from NrfA is supported by (i) homology based on sequence and structure, (ii) its wide distribution among bacterial taxa, (iii) the dedicated interaction with specific proteins, and it is (iv) congruent with geological history.  相似文献   

9.
The oxidation of hydroxylamine to nitrite, which had been catalyzed by hydroxylamine oxidoreductase purified fromNitrosomonas europaea, was studied. The enzyme oxidized hydroxylamine almost completely to nitrite under aerobic conditions if sufficient amount of cytochromec or ferricyanide was added and the reaction was performed in phosphate buffer. Even under anaerobic conditions, hydroxylamine was oxidized to nitrite by the enzyme, but nitrite, once formed, disappeared when the reaction was continued for more than several minutes.  相似文献   

10.
An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane-forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep-branching phylogenetic lineage at the level of a new family within the class ‘Natranaerobiia’. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood–Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr-like operon. The organism obviously relies on Na-based bioenergetics, since the genome encodes for the Na+-Rnf complex, Na+-F1F0 ATPase and Na+-translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO-oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.  相似文献   

11.
Pathways of electron transport to periplasmic nitrate (NapA) and nitrite (NrfA) reductases have been investigated in Campylobacter jejuni, a microaerophilic food-borne pathogen. The nap operon is unusual in lacking napC (encoding a tetra-haem c-type cytochrome) and napF, but contains a novel gene of unknown function, napL. The iron-sulphur protein NapG has a major role in electron transfer to the NapAB complex, but we show that slow nitrate-dependent growth of a napG mutant can be sustained by electron transfer from NrfH, the electron donor to the nitrite reductase NrfA. A napL mutant possessed approximately 50% lower NapA activity than the wild type but showed normal growth with nitrate as the electron acceptor. NrfA was constitutive and was shown to play a role in protection against nitrosative stress in addition to the previously identified NO-inducible single domain globin, Cgb. However, nitrite also induced cgb expression in an NssR-dependent manner, suggesting that growth of C. jejuni with nitrite causes nitrosative stress. This was confirmed by lack of growth of cgb and nssR mutants, and slow growth of the nrfA mutant, in media containing nitrite. Thus, NrfA and Cgb together provide C. jejuni with constitutive and inducible components of a robust defence against nitrosative stress.  相似文献   

12.
Cells of Nitrosomonas eutropha grown under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were initially unable to oxidize ammonia (ammonium) and hydroxylamine when transferred to oxic conditions. Recovery of ammonia and hydroxylamine oxidation activity was dependent on the presence of NO2. Under oxic conditions, without addition of NO2, ammonia consumption started after 8 – 9 days, and small amounts of NO and NO2 were detectable in the gas atmosphere. Removing these nitrogen oxides by intensive aeration, ammonia oxidation activity decreased and broke off after 15 days. Addition of gaseous NO2 (25 ppm) led to a fast recovery of ammonia oxidation (3 days). Simultaneously, the arrangement of intracytoplasmic membranes (ICM) changed from circular to flattened vesicles, the protein pattern revealed an increase in the concentration of a 27 and a 30 kDa polypeptide, and the cytochrome c content increased significantly.  相似文献   

13.
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.  相似文献   

14.
The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c‐type cytochrome (cN) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c‐type cytochrome domain of cN shares high sequence identity with those localized c‐terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C‐terminal c‐type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host‐restricted bacterial genus.  相似文献   

15.
The decahaem homodimeric cytochrome c nitrite reductase (NrfA) is expressed within the periplasm of a wide range of Gamma-, Delta- and Epsilon-proteobacteria and is responsible for the six-electron reduction of nitrite to ammonia. This allows nitrite to be used as a terminal electron acceptor, facilitating anaerobic respiration while allowing nitrogen to remain in a biologically available form. NrfA has also been reported to reduce nitric oxide (a reaction intermediate) and sulfite to ammonia and sulfide respectively, suggesting a potential secondary role as a detoxification enzyme. The protein sequences and crystal structures of NrfA from different bacteria and the closely related octahaem nitrite reductase from Thioalkalivibrio nitratireducens (TvNir) reveal that these enzymes are homologous. The NrfA proteins contain five covalently attached haem groups, four of which are bis-histidine-co-ordinated, with the proximal histidine being provided by the highly conserved CXXCH motif. These haems are responsible for intraprotein electron transfer. The remaining haem is the site for nitrite reduction, which is ligated by a novel lysine residue provided by a CXXCK haem-binding motif. The TvNir nitrite reductase has five haems that are structurally similar to those of NrfA and three extra bis-histidine-coordinated haems that precede the NrfA conserved region. The present review compares the protein sequences and structures of NrfA and TvNir and discusses the subtle differences related to active-site architecture and Ca2+ binding that may have an impact on substrate reduction.  相似文献   

16.
Metalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd 1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.  相似文献   

17.
In this paper we propose that the reduction of the bacteriochlorophyl dimer cation (P+) by cytochrome c in the photosynthetic bacteria Rps. viridis and Chromatium vinosum proceeds via two parallel electron transfer (ET) processes from two distinct cytochrome c molecules. The dominating ET process at high temperatures involves the activated oxidation of the high-potential cytochrome c at closest proximity to P, while the dominating low-temperature process involves activationless ET from a low-potential cytochrome c, which is further away from P. The available data for the effects of blocking the low-potential cytochrome c on ET dynamics are consistent with this model, which results in reasonable nuclear reorganization and electronic coupling parameters for the parallel cytochrome oxidation processes. The lack of universality in the cytochrome oxidation in reaction centres of various bacteria is emphasized.  相似文献   

18.
Han D  Kim K  Oh J  Park J  Kim Y 《Proteins》2008,70(3):900-914
Escherichia coli synthesize C-type cytochromes only during anaerobic growth in media supplemented with nitrate and nitrite. The reduction of nitrate to ammonium in the periplasm of Escherichia coli involves two separate periplasmic enzymes, nitrate reductase and nitrite reductase. The nitrite reductase involved, NrfA, contains cytochrome C and is synthesized coordinately with a membrane-associated cytochrome C, NrfB, during growth in the presence of nitrite or in limiting nitrate concentrations. The genes NrfE, NrfF, and NrfG are required for the formate-dependent nitrite reduction pathway, which involves at least two C-type cytochrome proteins, NrfA and NrfB. The NrfE, NrfF, and NrfG genes (heme lyase complex) are involved in the maturation of a special C-type cytochrome, apocytochrome C (apoNrfA), to cytochrome C (NrfA) by transferring a heme to the unusual heme binding motif of the Cys-Trp-Ser-Cys-Lys sequence in apoNrfA protein. Thus, in order to further investigate the roles of NrfG in the formation of heme lyase complex (NrfEFG) and in the interaction between heme lyase complex and formate-dependent nitrite reductase (NrfA), we determined the crystal structure of NrfG at 2.05 A. The structure of NrfG showed that the contact between heme lyase complex (NrfEFG) and NrfA is accomplished via a TPR domain in NrfG which serves as a binding site for the C-terminal motif of NrfA. The portion of NrfA that binds to TPR domain of NrfG has a unique secondary motif, a helix followed by about a six-residue C-terminal loop (the so called "hook conformation"). This study allows us to better understand the mechanism of special C-type cytochrome assembly during the maturation of formate-dependent nitrite reductase, and also adds a new TPR binding conformation to the list of TPR-mediated protein-protein interactions.  相似文献   

19.
20.
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe1Mn0.3Zn0.26Cu0.03Co0.03Mo0.03. Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c 3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号