首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of low levels of calpastatin activity in erythrocytes of hypertensive rats affects regulation of calpain activity so it is highly susceptible to activation within physiological fluctuations in [Ca2+]. Under identical conditions, in red cells of normotensive rats, calpain activation is efficiently controlled by the high levels of calpastatin activity, and a progressive increase in proteinase activity can only be observed in parallel with a decrease in the level of calpastatin. In intact erythrocytes from hypertensive rats exposed to small variations in [Ca2+], degradation of anion transport protein (band 3) and Ca(2+)-ATPase appears as a primary event indicating that these two transmembrane proteins are probably early recognized as targets of intracellular calpain activity. Furthermore, band 3 protein seems to be structurally modified in erythrocytes from hypertensive rats, as indicated by its increased susceptibility to degradation in the presence of 10-50 microM Ca2+. In addition, when exposed to progressive and limited increases in [Ca2+], erythrocytes from hypertensive rats, but not those from normotensive rats, show a high degree of fragility that can be restored to normal values by inhibition of calpain. These results indicate that, within fluctuations in [Ca2+] close to physiological values, regulation of calpain activity is efficiently accomplished in normal erythrocytes but is completely lost in cells from hypertensive animals. Regulation is of critical importance in maintaining normal structural and functional properties of selective red cell membrane and cytoskeletal proteins, among which band 3 and Ca(2+)-ATPase appear to be the substrates with highest susceptibility to digestion by calpain.  相似文献   

2.
Regulation of calpain activity in rat brain with altered Ca2+ homeostasis   总被引:1,自引:0,他引:1  
Activation of calpain occurs as an early event in correlation with an increase in [Ca2+]i induced in rat brain upon treatment with a high salt diet for a prolonged period of time. The resulting sequential events have been monitored in the brain of normal and hypertensive rats of the Milan strain, diverging for a constitutive alteration in the level of [Ca2+]i found to be present in nerve cells of hypertensive animals. After 2 weeks of treatment, the levels of the plasma membrane Ca2+-ATPase and of native calpastatin are profoundly decreased. These degradative processes, more pronounced in the brain of hypertensive rats, are progressively and efficiently compensated in the brain of both rat strains by different incoming mechanisms. Along with calpastatin degradation, 15-kDa still-active inhibitory fragments are accumulated, capable of efficiently replacing the loss of native inhibitor molecules. A partial return to a more efficient control of Ca2+ homeostasis occurs in parallel, assured by an early increase in the expression of Ca2+-ATPase and of calpastatin, both producing, after 12 weeks of a high salt (sodium) diet, the restoration of almost original levels of the Ca2+ pump and of significant amounts of native inhibitor molecules. Thus, conservative calpastatin fragmentation, associated with an increased expression of Ca2+-ATPase and of the calpain natural inhibitor, has been demonstrated to occur in vivo in rat brain. This represents a sequential adaptive response capable of overcoming the effects of calpain activation induced by a moderate long term elevation of [Ca2+]i.  相似文献   

3.
Hypertensive rats from the Milan strain show a significant decrease in calpastatin activity as compared with normotensive control animals. Calpastatin deficiency is age-related and highly relevant in kidney, heart, and erythrocytes and of minor entity in brain tissue. In normotensives the changes during aging in the levels of calpastatin activity and mRNA are consistent with an increase of calpastatin protein. In hypertensive rats such a relationship during aging is not observed, because a progressive accumulation of mRNA is accompanied by a lower amount of calpastatin protein as compared with control rats. Together with the low level of calpastatin in kidney of hypertensive rats, a progressive accumulation of an active 15-kDa calpastatin fragment, previously shown to represent a typical product of calpain-mediated calpastatin degradation, is also observed. Evidence for such intracellular proteolysis by Ca(2+)-activated calpain is provided by the normalization of the calpastatin level, up to that of control animals, in hypertensive rats treated with drugs known to reduce both blood pressure and intracellular Ca(2+) influx. Further evidence is provided by the disappearance, in these conditions, of the 15-kDa calpastatin fragment. These data allow the conclusion that calpastatin degradation is a relevant part of the overall mechanism for regulating calpain activity.  相似文献   

4.
The intracellular Ca(2+)-dependent protease calpain and the specific calpain endogenous inhibitor calpastatin are widely distributed, with the calpastatin/calpain ratio varying among tissues and species. Increased Ca(2+) and calpain activation have been implicated in Alzheimer's disease (AD), with scant data available on calpastatin/calpain ratio in AD. Information is lacking on calpain activation and calpastatin levels in transgenic mice that exhibit AD-like pathology. We studied calpain and calpastatin in Tg2576 mice and in their wild type littermates (control mice). We found that in control mice calpastatin level varies among brain regions; it is significantly higher in the cerebellum than in the hippocampus, frontal and temporal cortex, whereas calpain levels are similar in all these regions. In the Tg2576 mice, calpain is activated, calpastatin is diminished, and calpain-dependent proteolysis is observed in brain regions affected in AD and in transgenic mice (especially hippocampus). In contrast, no differences are observed between the Tg2576 and the control mice in the cerebellum, which does not exhibit AD-like pathology. The results are consistent with the notion that a high level of calpastatin in the cerebellum renders the calpain in this brain region less liable to be activated; in the other brain parts, in which calpastatin is low, calpain is more easily activated in the presence of increased Ca(2+), and in turn the activated calpain leads to further diminution in calpastatin (a known calpain substrate). The results indicate that calpastatin is an important factor in the regulation of calpain-induced protein degradation in the brains of the affected mice, and imply a role for calpastatin in attenuating AD pathology. Promoting calpastatin expression may be used to ameliorate some manifestations of AD.  相似文献   

5.
Chen Z  Yao K  Xu W  Wu R 《Molekuliarnaia biologiia》2008,42(2):258-264
To investigate the effect of E-64d, a selective inhibitor of calpain, on the expression of calpain and calpastatin in rat retina subject to ischemia/reperfusion injury (IRI). An animal model of retinal IRI was set up by increasing the intraocular pressure (110 mmHg) of a rat eye for 1 h. The retinal thickness and morphologic changes were detected by histology. The protein expression of m-calpain (a calpain isoform) in the retina was assessed by immunohistochemistry and Western blot assay. The mRNA of m-calpain as well as calpastatin (an endogenous protein inhibitor of calpain) in the retina was assessed by RT-PCR, and the ratio of m-calpain/calpastatin was then calculated. To evaluate the effect of E-64d on the expression of calpain, the drug (5 microl of 100 microM) was injected intravitreously immediately after IRI. There were retinal edematous changes, particularly in the inner plexiform layer after IRI. The protein expression of m-calpain in the retina was increased 24h after IRI, an effect that was inhibited by E-64d (P < 0.05). The mRNA expression of m-calpain and calpastatin was also increased 24 h and 3 h after IRI, respectively. Neither m-calpain nor calpastatin mRNA expression was influenced by E-64d (P > 0.05). The mRNA ratio of m-calpain to calpastatin was increased at the 6 h, 24 h and 72 h after IRI, and only at 24 h the increase of the ratio of m-calpain to calpastatin was inhibited by E-64d (P < 0.05). In the rat retina of IRI, E-64d inhibits the increase of m-calpain protein expression, as well as the mRNA ratio increase of m-calpain to calpastatin. E-64d also inhibited the retinal damage induced by IRI, suggesting a role for E-64d in the protection of the retinal apoptosis induced by IRI.  相似文献   

6.
It is generally accepted that the Ca(2+)-dependent interaction of calpain with calpastatin is the most relevant mechanism involved in the regulation of Ca(2+)-induced proteolysis. We now report that a calpain-calpastatin association can occur also in the absence of Ca(2+) or at very low Ca(2+) concentrations, reflecting the physiological conditions under which calpain retains its inactive conformational state. The calpastatin binding region is localized in the non-inhibitory L-domain containing the amino acid sequences encoded by exons 4-7. This calpastatin region recognizes a calpain sequence located near the end of the DII-domain. Interaction of calpain with calpastatins lacking these sequences becomes strictly Ca(2+)-dependent because, under these conditions, the transition to an active state of the protease is an obligatory requirement. The occurrence of the molecular association between Ca(2+)-free calpain and various recombinant calpastatin forms has been demonstrated by the following experimental results. Addition of calpastatin protected calpain from trypsin digestion. Calpain was coprecipitated when calpastatin was immunoprecipitated. The calpastatin molecular size increased following exposure to calpain. The two proteins comigrated in zymogram analysis. Furthermore, calpain-calpastatin interaction was perturbed by protein kinase C phosphorylation occurring at sites located at the exons involved in the association. At a functional level, calpain-calpastatin interaction at a physiological concentration of Ca(2+) represents a novel mechanism for the control of the amount of the active form of the protease potentially generated in response to an intracellular Ca(2+) influx.  相似文献   

7.
BackgroundXin-Ji-Er-Kang (XJEK) as a herbal formula of traditional Chinese medicine (TCM) has shown the protective effects on myocardial function as well as renal function in mouse models of myocardial infarction.Hypothesis/PurposeWe investigated the effects of XJEK on cardiovascular- and renal-function in a heart failure mouse model induced by high salt (HS) and the associated mechanisms.Study designFor the purpose of assessing the effects of XJEK on a hypertensive heart failure model, mice were fed with 8% high salt diet. XJEK was administered by oral gavage for 8 weeks. Cardiovascular function parameters, renal function associated biomarkers and XJEK's impact on renin-angiotensin–aldosterone system (RAAS) activation were assessed. To determine the underlying mechanism, the calpain1/junctophilin-2 (JP2)/sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) pathway was further studied in AC16 cells after angiotensin II-challenge or after calpastatin small interfering RNA (siRNA) transfection.ResultsMice on HS-diet exhibited hypertensive heart failure along with progressive kidney injury. Similar to fosinopril, XJEK ameliorated hypertension, cardiovascular-and renal- dysfunction in mice of HS-diet group. XJEK inhibited HS-induced activation of RAAS and reversed the abnormal expression pattern of calpain1and JP2 protein in heart tissues. XJEK significantly improved cell viability of angiotensin II-challenged AC16 cells. Moreover, XJEK's impact on calpain1/JP2 pathway was partly diminished in AC16 cells transfected with calpastatin siRNA.ConclusionXJEK was found to exert cardiovascular- and renal protection in HS-diet induced heart failure mouse model. XJEK inhibited HS-diet induced RAAS activation by inhibiting the activity and expression of calpain1 and protected the junctional membrane complex (JMC) in cardiomyocytes.  相似文献   

8.
9.
Calpain system regulates muscle mass and glucose transporter GLUT4 turnover   总被引:2,自引:0,他引:2  
The experiments in this study were undertaken to determine whether inhibition of calpain activity in skeletal muscle is associated with alterations in muscle metabolism. Transgenic mice that overexpress human calpastatin, an endogenous calpain inhibitor, in skeletal muscle were produced. Compared with wild type controls, muscle calpastatin mice demonstrated normal glucose tolerance. Levels of the glucose transporter GLUT4 were increased more than 3-fold in the transgenic mice by Western blotting while mRNA levels for GLUT4 and myocyte enhancer factors, MEF 2A and MEF 2D, protein levels were decreased. We found that GLUT4 can be degraded by calpain-2, suggesting that diminished degradation is responsible for the increase in muscle GLUT4 in the calpastatin transgenic mice. Despite the increase in GLUT4, glucose transport into isolated muscles from transgenic mice was not increased in response to insulin. The expression of protein kinase B was decreased by approximately 60% in calpastatin transgenic muscle. This decrease could play a role in accounting for the insulin resistance relative to GLUT4 content of calpastatin transgenic muscle. The muscle weights of transgenic animals were substantially increased compared with controls. These results are consistent with the conclusion that calpain-mediated pathways play an important role in the regulation of GLUT4 degradation in muscle and in the regulation of muscle mass. Inhibition of calpain activity in muscle by overexpression of calpastatin is associated with an increase in GLUT4 protein without a proportional increase in insulin-stimulated glucose transport. These findings provide evidence for a physiological role for calpains in the regulation of muscle glucose metabolism and muscle mass.  相似文献   

10.
The peptidyl-proline isomerase, protein never in mitosis gene A interacting-1 (PIN1) binds and isomerizes proteins phosphorylated on serine/threonine before a proline. It was previously found that depletion of PIN1 greatly increased induction of cyclooxygenase-2 and inducible nitric oxide synthase by lowering calpain activity in murine aortic endothelial cells (MAEC). Here we investigated the effect of PIN1 on the endogenous inhibitor of heterodimeric μ- and m-calpains, calpastatin. MAEC were transduced with small hairpin (sh) RNA to knock down PIN1 (KD) or an inactive Control shRNA. Cells were also treated with non-targeted double stranded small inhibitory RNA (siRNA) or siRNA designed to deplete calpastatin. Despite reducing calpain activity, PIN1 KD did not significantly affect the expression of μ- and m-calpains, or calpastatin, compared to Control shRNA. Instead, depletion of PIN1 increased the inhibitory activity of calpastatin. Calpastatin co-immunoprecipitated with endogenous PIN1 and was pulled down with glutathione-S-transferase (GST)–PIN1 fusion protein. Adding GST–PIN1 to KD cell extracts lacking PIN1 reduced calpastatin inhibitory activity. Substrate binding and catalytic domain mutants of PIN1 failed to do so. These results suggest that protein interaction and the proline isomerase functions of PIN1 are required for it to inhibit calpastatin. Furthermore, depletion of calpastatin raised calpain activity and reduced calpain inhibitory activity to similar levels in KD and Control MAEC, indicating that calpastatin is required for PIN1 depletion to lower calpain activity. Thus, PIN1 apparently restrains the ability of calpastatin to inhibit calpain, maintaining calpain activity in endothelial cells. PIN1 may act directly via phosphorylated serine/threonine–proline motifs in calpastatin, or indirectly via other PIN1 substrates that control calpastatin.  相似文献   

11.
To investigate the effect of E-64d, a selective inhibitor of calpain, on the expression of calpain and calpastatin in rat retina was subjected to ischemia/reperfusion injury (IRI). An animal model of retinal IRI was set up by increasing the intraocular pressure (110 mm Hg) of a rat eye for 1 h. The retinal thickness and morphologic changes were detected by histology. The protein expression of m-calpain (a calpain isoform) in the retina was assessed by immunohistochemistry and Western blot assay. The mRNA of m-calpain, as well as calpastatin (an endogenous protein inhibitor of calpain), in the retina was assessed by RT-PCR, and the ratio of m-calpain/calpastatin was then calculated. To evaluate the effect of E-64d on the expression of calpain, the drug (5 μl of 100 μM) was injected intravitreously immediately after IRI. There were retinal edematous changes, particularly in the inner plexiform layer after IRI. The protein expression of m-calpain in the retina was increased 24 h after IRI, an effect that was inhibited by E-64d (P < 0.05). The mRNA expression of m-calpain and calpastatin was also increased 24 h and 3 h after IRI, respectively. Neither m-calpain nor calpastatin mRNA expression was influenced by E-64d (P > 0.05). The mRNA ratio of m-calpain to calpastatin was increased at the 6 h, 24 h and 72 h after IRI, and only at 24 h the increase of the ratio of m-calpain to calpastatin was inhibited by E-64d (P < 0.05). In the rat retina of IRI, E-64d inhibits the increase of m-calpain protein expression, as well as the mRNA ratio increase of m-calpain to calpastatin. E-64d also inhibited the retinal damage induced by IRI, suggesting a role for E-64d in the protection of the retinal apoptosis induced by IRI. Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 2, pp. 258–264. The text was submitted by the authors in English.  相似文献   

12.
13.
Calpains are proteolytic enzymes that modulate cellular function through cleavage of targets, thereby modifying their actions. An important role is emerging for calpains in regulating inflammation and immune responses, although specific mechanisms by which this occurs have not been clearly defined. In this study, we identify a novel target of calpain, selenoprotein K (SelK), which is an endoplasmic reticulum transmembrane protein important for Ca(2+) flux in immune cells. Calpain-mediated cleavage of SelK was detected in myeloid cells (macrophages, neutrophils, and dendritic cells) but not in lymphoid cells (B and T cells). Both m- and μ-calpain were capable of cleaving immunoprecipitated SelK, but m-calpain was the predominant isoform expressed in mouse immune cells. Consistent with these results, specific inhibitors were used to show that only m-calpain cleaved SelK in macrophages. The cleavage site in SelK was identified between Arg(81) and Gly(82) and the resulting truncated SelK was shown to lack selenocysteine, the amino acid that defines selenoproteins. Resting macrophages predominantly expressed cleaved SelK and, when activated through different Toll-like receptors (TLRs), SelK cleavage was inhibited. We found that decreased calpain cleavage was due to TLR-induced up-regulation of the endogenous inhibitor, calpastatin. TLR-induced calpastatin expression not only inhibited SelK cleavage, but cleavage of another calpain target, talin. Moreover, the expression of the calpain isoforms and calpastatin in macrophages were different from T and B cells. Overall, our findings identify SelK as a novel calpain target and reveal dynamic changes in the calpain/calpastatin system during TLR-induced activation of macrophages.  相似文献   

14.
In dividing cells calpastatin diffuses from aggregates into cytosol, indicating the requirement for a tight regulation of calpain. Accordingly, the involvement of the calpain-calpastatin system in cell proliferation and in the density-dependent growth arrest was studied in JA3 cells stably transfected with a calpastatin form permanently localized in cytosol.In calpastatin overexpressing cells, cell cycle rate is 50% reduced, and cells enter the ungrowing, still fully reversible, stage at a 3-fold higher cell density. Furthermore, in cell density growth arrest phase, down regulation of α- and θ-PKC isoforms, as well as FAK and talin occurs. In calpastatin overexpressing cells, degradation of these calpain substrate proteins is prevented and delayed. Thus, calpain activity plays a crucial role in inducing the cell entry into a functional quiescent phase.  相似文献   

15.
Many studies have demonstrated that the calcium-dependent proteolytic system (calpains and calpastatin) is involved in myoblast differentiation. It is also known that myogenic differentiation can be studied in vitro. In the present experiments, using a mouse muscle cell line (C2C12) we have analyzed both the sequences of appearance and the expression profiles of calpains 1, 2, 3 and calpastatin during the course of myoblast differentiation. Our results mainly show that the expression of ubiquitous calpains (calpain 1 and 2) and muscle-specific calpain (calpain 3) at the mRNAs level as well as at the protein level do not change significantly all along this biological process. In the same time, the specific inhibitor of ubiquitous calpains, calpastatin, presents a stable expression at mRNAs level as well as protein level, all along myoblast to myotube transition. A comparison with other myogenic cells is presented.  相似文献   

16.
We studied the activity of calpain in the brain tissue of guinea pigs at different stages of the development of experimental allergic encephalomyelitis (EAE). Eleven days after inoculation of a mixture containing myelin main protein into the experimental animals, we observed a drop in the calpain activity (on average, by 27% with respect to the control), whereas on the 20th and 27th days the activity of the enzyme under study exceeded the norm (by 12%). The calpain/calpastatin ratio also altered at the different stages of development of EAE: the amount of calpastatin increased significantly on the 11th and 27th days, while on the 20th day the level of calpastatin was close to that typical of the control animals. Therefore, we found that the state of calpain/calpastatin system in the guinea pig brain demonstrates some correlation with the dynamics of development of EAE.  相似文献   

17.
DEAE-Sephacel and phenyl-Sepharose chromatography were compared as methods for separating and quantitatively isolating calpain I, calpain II, and calpastatin from lamb muscle extracts. DEAE-Sephacel chromatography gave greater than 90% recovery of all three proteins, while phenyl-Sepharose gave only 70, 66, and 48% of the DEAE recovery of calpain I, calpain II, and calpastatin, respectively. Additionally, DEAE-Sephacel chromatography was shown to effectively separate calpastatin and calpain I. Consequently DEAE-Sephacel appears to be superior to phenyl-Sepharose for quantitative isolation of the components of the calcium-dependent proteinase system from muscle extracts. Dietary administration of beta-agonist (L-644, 969; Merck Sharpe & Dohme Research Laboratories) decreases extractable calpain I activity in lamb longissimus dorsi (LD) muscle by 10-14% (P less than 0.05), increases calpain II activity by 34-42% (P less than 0.001), and increases calpastatin activity by 59-75% (P less than 0.001). Additionally, net cathepsin B activity is reduced by 30% (P less than 0.05) in the LD of beta-agonist-treated lambs. Reduced activity of the calcium-dependent or catheptic proteinase systems may contribute to the increased protein accretion in muscles of beta-agonist-treated lambs.  相似文献   

18.
Rat skeletal muscle contains a calpain activator protein characterized by a high specificity for calpain II, the high Ca(2+)-requiring isoform of this class of proteinases. The activator protein increases the rate of intramolecular conversion of the native 80-kDa catalytic subunit of calpain into the autolysed 75-kDa forms with maximal rate at concentrations of calcium approximately 25 times lower than those required by the native proteinase. The activator protein interacts with native calpain II forming a 1:1 complex; interaction does not occur with the fully activated form, produced by autoproteolysis. Even after immobilization to membranes, the activator binds to calpain, which then undergoes sequential activation and release from its bound form. The activator is itself resistant to digestion by calpain II, whereas it increases the rate at which homologous calpastatin is degraded by the proteinase. Taken together, these results are indicative of the existence in rat skeletal muscle of an activating system specific for calpain II which is potentially involved in the regulation of the inhibitory efficiency of calpastatin, through modulation of its intracellular level.  相似文献   

19.
We have previously reported the activation of procalpain mu (precursor for low-calcium-requiring calpain) in apoptotic cells using a cleavage-site-directed antibody specific to active calpain [Kikuchi, H. and Imajoh-Ohmi, S. (1995) Cell Death Differ. 2, 195-199]. In this study, calpastatin, the endogenous inhibitor protein for calpain, was cleaved to a 90-kDa polypeptide during apoptosis in human Jurkat T cells. The limited proteolysis of calpastatin preceded the autolytic activation of procalpain. Inhibitors for caspases rescued the cells from apoptosis and simultaneously inhibited the cleavage of calpastatin. The full-length recombinant calpastatin was also cleaved by caspase-3 or caspase-7 at Asp-233 into the same size fragment. Cys-241 was also targeted by these caspases in vitro but not in apoptotic cells. Caspase-digested calpastatin lost its amino-terminal inhibitory unit, and inhibited three moles of calpain per mole. Our findings suggest that caspases trigger the decontrol of calpain activity suppression by degrading calpastatin.  相似文献   

20.
Variation of calpain I, calpain II, and calpastatin in rat liver during growth from 0 to 14 weeks was studied by chromatographic fractionation of the liver cytosol and enzyme assays on the eluted fractions. When compared in terms of units per g wet liver, high-Ca2+-requiring calpain II always exceeded low-Ca2+-requiring calpain I in male and female rats. The level of calpain II in neonatal (0 week) rat liver was 1.9-2.9 times higher than that for the adults (7 to 14 weeks). The contents of calpastatin, calpain-specific inhibitor protein, were were always higher than those of calpain II in adult rat liver, but the difference was much less, or sometimes even reversed, in neonatal and young (1 and 2 weeks) animals. In general, the variation was more pronounced in female than in male rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号