首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dispersal is frequently more prevalent in one sex compared to the other. Greenwood proposed that patterns of sex-biased dispersal among birds and mammals are linked to their mating strategies. For species where males defend resources rather than females, he predicted female-biased dispersal, because males should remain at their birth site where they are familiar with the distribution of the resources that they must defend. Greenwood's hypothesis has been extensively supported among birds, where most species exhibit a resource-defence mating strategy. However, almost no equivalent information is available for mammals as males generally defend mates in this group. An exception is the European roe deer, a resource-defence mating ungulate. We thus tested Greenwood's hypothesis on this atypical mammalian model, looking for female-biased dispersal using sex-specific inter-individual genetic distances. We conclusively show that gene flow is not higher among females compared to males in the studied roe deer population, and hence that dispersal is not female-biased, suggesting that male mating strategy is not the primary selective force driving the evolution of dispersal in roe deer. We discuss the role of female mate choice and intra-sexual competition as possible alternative selective pressures involved.  相似文献   

2.
The local resource competition hypothesis and the local mate competition hypothesis were developed based on avian and mammalian systems to explain sex-biased dispersal. Most avian species show a female bias in dispersal, ostensibly due to resource defence, and most mammals show a male bias, ostensibly due to male-male competition. These findings confound phylogeny with mating strategy; little is known about sex-biased dispersal in other taxa. Resource defence and male-male competition are both intense in Plethodon cinereus, a direct-developing salamander, so we tested whether sex-biased dispersal in this amphibian is consistent with the local resource competition hypothesis (female-biased) or the local mate competition hypothesis (male-biased). Using fine-scale genetic spatial autocorrelation analyses, we found that females were philopatric, showing significant positive genetic structure in the shortest distance classes, with stronger patterns apparent when only territorial females were tested. Males showed no spatial genetic structure over the shortest distances. Mark-recapture observations of P. cinereus over 5 years were consistent with the genetic data: males dispersed farther than females during natal dispersal and 44% of females were recaptured within 1 m of their juvenile locations. We conclude that, in this population of a direct-developing amphibian, females are philopatric and dispersal is male-biased, consistent with the local mate competition hypothesis.  相似文献   

3.
Sex-biased dispersal is a common phenomenon in birds and mammals. Competition for mates has been argued to be an important selective pressure favouring dispersal. Sexual differences in the level of intrasexual competition may produce asymmetries in the costs-benefits balance of dispersal and philopatry for males and females, which may favour male-biased dispersal in polygynous species such as most mammals. This being the case, condition-dependent dispersal predicts that male-bias should decrease if mating competition relaxes. We test this expectation for red deer, where male-biased dispersal is the norm. In southwestern Spain, red deer populations located in nonfenced hunting estates presented altered structures with sex ratio strongly biased to females and high proportion of young males. As a consequence, mate competition in these populations was lower than in other, most typical red deer populations. We found that, under such conditions of altered population structure, dispersal was female-biased rather than male-biased. Additionally, mate competition positively related to male dispersal but negatively to female dispersal. Other factors such as resource competition, age of individuals and sex ratio were not related to male or female dispersal. Males may not disperse if intrasexual competition is low and then females may disperse as a response to male philopatry. We propose hypotheses related to female mate choice to explain female dispersal under male philopatry. The shift of the sex-biased dispersal pattern along the gradient of mate competition highlights its condition-dependence as well as the interaction between male and female dispersal in the evolution of sex-biased dispersal.  相似文献   

4.
Courtship varies among individuals, partly because individuals differ in quality. To explore proximate factors affecting courtship behavior, I investigated the effect of diet quality on mate choice and competition in the barklouseLepinotus patruelis Pearman (Psocoptera: Trogiidae) in the laboratory. The effect of sex ratio on mate choice was also addressed. Some males were found to exhibit active mate choice, and rejected females in both male- and female-biased sex ratio groups, although they were more likely to do so in a female-biased sex ratio group. Diet quality affected male mate choice: males on high-quality diets were significantly more likely to reject females than males on low-quality diets. Males exhibited choice significantly more often than females, who showed no overt signs of choosiness. Both males and females competed for, access to mates: both sexes attempted to interfere with mounted pairs and females grappled. The choosiness of the male may have directly affected the incidence of female competition. The results also suggest that the patterns of mate choice inL. patruelis differ from those expected by conventional sex role theory.  相似文献   

5.
Differential dispersal and female-biased sex allocation in a parasitic wasp   总被引:2,自引:0,他引:2  
1. Differential dispersal of males and females from a population is predicted to result in biased sex-allocation decisions, even in the absence of sibmating.
2. Mated Bracon hebetor Say (Hymenoptera: Braconidae) females produce distinctly female-biased sex ratios (≈ 30% male), yet sibmating is not a feature of the mating biology of this species. Therefore the dispersal behaviour of male and female B. hebetor from caged subpopulations was examined.
3. A higher proportion of females than males dispersed from the caged subpopulations. Furthermore, females dispersed earlier than males. This suggests that the level of competition for mates experienced by males is higher than the level of competition for hosts experienced by sisters.
4. Roughly half of the dispersing females left after they had mated. Females generally mate once in their lifetimes, suggesting that competition between brothers for mates may be high.  相似文献   

6.
Sex-biased dispersal is capable of generating population structure in nonisolated populations and may affect adaptation processes when selective conditions differ among populations. Intrasexual competition for local resources and/or mating opportunities predicts a male-biased dispersal in polygynous species and a female bias in monogamous species. The patterns of sex-biased dispersal in birds and mammals are well explained by their respective mating systems, but the picture emerging from fish studies is still mixed. Using neutral genetic markers, we investigated whether there is any evidence for sex-biased dispersal among Baltic Sea populations of the three-spined stickleback ( Gasterosteus aculeatus ). The null hypothesis of non sex-biased dispersal was rejected in favour of male-biased dispersal in this species. As the three-spined stickleback has a polygynous mating system, the observed male bias in dispersal is consistent with the hypothesis that local mate competition might drive the observed pattern. Although more research both on the proximate and ultimate causes behind the observed pattern is needed, our results serve as a first step towards understanding patterns of sex-biased dispersal in this species.  相似文献   

7.
Following logic of the mate-availability hypothesis, females are expected to show asynchronous reproduction in those species where operational sex ratios are female-biased and under circumstances where an individual female is sexually receptive only for short durations. We show that females of the intertidal amphipod Corophium volutator are receptive to mating only for a few days following their moult and are unable to hasten onset of moulting in the presence of a male. Despite meeting the conditions of the mate-availability hypothesis, reproduction was synchronous for female C. volutator across spatial and temporal scales relevant to mate-searching abilities of males. As such, some females are not expected to mate between moults, which coincide with their ability to mate. However, females do moult frequently (relative to males) which should increase their likelihood of mating over their lifetimes. It is unlikely that seasonal constraints, predation, or competition can account for the high degree of synchrony among breeding female amphipods. We suggest that dispersal of females or their offspring may constrain activity of females, as they moulted almost entirely during spring tides (although not always during the same set of spring tides). Female reproductive synchrony also has implications for reproductive behaviour of males, in particular, the possibility of harem-defence polygyny.  相似文献   

8.
Positive size assortative mating can arise if either one or both sexes prefer bigger mates or if the success of larger males in contests for larger females leaves smaller males to mate with smaller females. Moreover, body size could not only influence pairing patterns before copulation but also the covariance between female size and size of ejaculate (number of spermatophores) transferred to a mate. In this field study, we examine the pre-copulatory mate choice, as well as insemination, patterns in the Cook Strait giant weta (Deinacrida rugosa). D. rugosa is a large orthopteran insect that exhibits strong female-biased sexual dimorphism, with females being nearly twice as heavy as males. Contrary to the general expectation of male preference for large females in insects with female-biased size dimorphism, we found only weak support for positive size assortative mating based on size (tibia length). Interestingly, although there was no correlation between male body size and the number of spermatophores transferred, we did find that males pass more spermatophores to lighter females. This pattern of sperm transfer does not appear to be a consequence of those males that mate heavier females being sperm depleted. Instead, males may provide lighter females with more spermatophores perhaps because these females pose less of a sperm competition risk to mates.  相似文献   

9.
The genetic structure of a group or population of organisms can profoundly influence the potential for inbreeding and, through this, can affect both dispersal strategies and mating systems. We used estimates of genetic relatedness as well as likelihood-based methods to reconstruct social group composition and examine sex biases in dispersal in a Costa Rican population of white-throated magpie-jays ( Calocitta formosa , Swainson 1827), one of the few birds suggested to have female-biased natal philopatry. We found that females within groups were more closely related than males, which is consistent with observational data indicating that males disperse upon maturity, whereas females tend to remain in their natal territories and act as helpers. In addition, males were generally unrelated to one another within groups, suggesting that males do not disperse with or towards relatives. Finally, within social groups, female helpers were less related to male than female breeders, suggesting greater male turnover within groups. This last result indicates that within the natal group, female offspring have more opportunities than males to mate with nonrelatives, which might help to explain the unusual pattern of female-biased philopatry and male-biased dispersal in this system. We suggest that the novel approach adopted here is likely to be particularly useful for short-term studies or those conducted on rare or difficult-to-observe species, as it allows one to establish general patterns of philopatry and genetic structure without the need for long-term monitoring of identifiable individuals.  相似文献   

10.
Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male–male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male–male contests revealed dominance of red males over bluish and yellow‐blotch males. Reproductive isolation in the presence of male–male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition‐free, two‐way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow‐blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male–male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition‐driven spatial segregation.  相似文献   

11.
Animal dispersal is associated with diverse costs and benefits that vary among individuals based on phenotype and ecological conditions. For example, females may disperse when males benefit more from defending territories in familiar environments. Similarly, size differences in dispersal propensity may occur when dispersal costs are size-dependent. When individuals do disperse, they may adopt behavioral strategies that minimize dispersal costs. Dispersing fish, for example, may travel within shoals to reduce predation risks. Further, kin shoaling may augment inclusive fitness by reducing predation of relatives. However, studies are lacking on the role of kin shoaling in dispersal. We explored how sex and size influence dispersal and kin shoaling in the cichlid Neolamprologus caudopunctatus. We microsatellite genotyped over 900 individuals from two populations separated by a potential dispersal barrier, and documented patterns of population structure, migration and within-shoal relatedness. Genetic differentiation across the barrier was greater for smaller than larger fish, suggesting larger fish had dispersed longer distances. Females exhibited weaker genetic differentiation and 11 times higher migration rates than males, indicating longer-distance female-biased dispersal. Small females frequently shoaled with siblings, possibly offsetting dispersal costs associated with higher predation risks. In contrast, small males appeared to avoid kin shoaling, possibly to avoid local resource competition. In summary, long-distance dispersal in N. caudopunctatus appears to be female-biased, and kin-based shoaling by small females may represent a behavioral adaptation that reduces dispersal costs. Our study appears to be the first to provide evidence that sex differences in dispersal influence sex differences in kin shoaling.  相似文献   

12.
Hamilton's concept of local mate competition (LMC) is the standard model to explain female-biased sex ratios in solitary Hymenoptera. In social Hymenoptera, however, LMC has remained controversial, mainly because manipulation of sex allocation by workers in response to relatedness asymmetries is an additional powerful mechanism of female bias. Furthermore, the predominant mating systems in the social insects are thought to make LMC unlikely. Nevertheless, several species exist in which dispersal of males is limited and mating occurs in the nest. Some of these species, such as the ant Cardiocondyla obscurior, have evolved dimorphic males, with one morph being specialized for dispersal and the other for fighting with nest-mate males over access to females. Such life history, combining sociality and alternative reproductive tactics in males, provides a unique opportunity to test the power of LMC as a selective force leading to female-biased sex ratios in social Hymenoptera. We show that, in concordance with LMC predictions, an experimental increase in queen number leads to a shift in sex allocation in favour of non-dispersing males, but does not influence the proportion of disperser males. Furthermore, we can assign this change in sex allocation at the colony level to the queens and rule out worker manipulation.  相似文献   

13.
Mate searching is assumed to be performed mostly by males, but when females benefit from multiple mating or are under risk of failing to mate, they may also perform mate searching. This is especially important in scramble competition polygynies, in which mate searching is the main mechanism of mate competition. Typically, more mobile individuals are expected to achieve higher mating success because mobility increases their probability of finding mates. If we assume individual movements are mainly explained by mate searching in scramble competition polygynies, we can investigate searching strategies by asking when individuals should leave their location and where they should go. We hypothesize that individuals will leave their locations when mating opportunities are scarce and will seek spatially close sites with better mating opportunities. We tested these hypotheses for males and females of Leptinotarsa undecimlineata, a leaf beetle with scramble competition polygyny in which both sexes are promiscuous. Individuals mate and feed exclusively on Solanum plants, and thus, individual movements can be described as switches between plants. Females were less likely than males to leave isolated plants, and both males and females moved preferentially to neighboring plants. Males were more likely to leave when the local number of females was low, and the number of males was high. They moved to plants with more females, a behavior consistent with a mate searching strategy. Females were more likely to move to plants with fewer males and many females, a behavior consistent with male harassment avoidance. Strategic movement is widely considered in foraging context, but seldom in a mate searching context. Considering that selection to minimize searching costs, maximize mating success, and minimize harassment may be ubiquitous in nature, we argue that strategic movements by mate searching individuals are likely to occur in many species.  相似文献   

14.
The gregarious parasitoid Cotesia glomerata (L.) is often presumed to possess the characteristic attributes of a species that manifests local mate competition (LMC), as it commonly produces female-biased broods. However, our field surveys of sex ratio and laboratory observations of adult behaviour showed that this species is subject to partial local mate competition caused by natal dispersal. On average, 30% of males left their natal patch before mating, with the proportion of dispersing males increasing with an increase in the patch's sex ratio (i.e. proportion of males). Over 50% of females left their natal patch before mating, and only 27.5% of females mated with males emerging from the same natal patch. Although females showed no preference between males that were and were not their siblings, broods from females that mated with siblings had a significantly higher mean brood sex ratio (0.56) than broods from females that mated with nonsiblings (0.39). Furthermore, brood sex ratios increased as inbreeding was intensified over four generations. A field population of this wasp had a mean brood sex ratio of 0.35 over 3 years, which conformed well to the evolutionarily stable strategy sex ratio (r=0.34) predicted by Taylor's partial sibmating model for haplodiploid species. These results suggest that the sex allocation strategy of C. glomerata is based on both partial local mate competition in males and inbreeding avoidance in females. In turn, this mating system plays a role in the evolution of natal dispersal behaviour in this species.Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

15.
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.  相似文献   

16.
Molecular analysis of dispersal in giant pandas   总被引:1,自引:0,他引:1  
Although dispersal in the giant panda (Ailuropoda melanoleuca) is a demographic mechanism which can potentially counteract the negative effect of habitat fragmentation, little is known about dispersal in this species because of difficulties in observing individuals. Using data from faecal microsatellite genotyping, we compared the spatial distribution of giant pandas in two populations and the proximity of relatives in one key population to infer their dispersal pattern. We conclude that giant pandas exhibit female-biased dispersal because: (i) vAIc (variance of assignment index) for females was significantly larger than for males, suggesting that females comprise both 'local' and 'foreign' genotypes; (ii) the average spatial distance of related female dyads was significantly larger than that of males; (iii) larger r (relatedness), F(ST) (genetic variance among populations) and mAIc (mean of assignment index) values were found in males using the software FSTAT, although the differences were not significant; (iv) males set up territories neighbouring to their birth place; (v) significant population structure using microsatellites with a concomitant lack of mitochondrial structure was found in a previous study, possibly indicating more extensive female dispersal; and (vi) female-biased dispersal was strongly supported by evidence from concomitant ecological studies. Considering previous ecological data and life-history characteristics of the giant panda, female-biased dispersal is most likely to be due to competition for birth dens among females, inbreeding avoidance and enhancing inclusive fitness among related males.  相似文献   

17.
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.  相似文献   

18.
In polygynous species, mate choice is an integrated part of sexual selection. However, whether mate choice occurs independently of the genetic relatedness among mating pairs has received little attention, although inbreeding may have fitness consequences. We studied whether genetic relatedness influenced females' choice of partner in a highly polygynous ungulate--the reindeer (Rangifer tarandus)--in an experimental herd during two consecutive rutting seasons; the herd consisting of 75 females in 1999 and 74 females in 2000 was exposed to three 4.5-year-old adults and three 1.5-year-old young males, respectively. The females' distribution during peak rut was not influenced by their genetic relatedness with the dominant males of the mating groups. Further, genetic relatedness did not influence the actual choice of mating partner. We conclude that inbreeding avoidance through mating group choice as well as choice of mating partner, two interconnected processes of female mate choice operating at two different scales in space and time, in such a highly female-biased reindeer populations with low level of inbreeding may not occur.  相似文献   

19.
Yu TL  Lu X 《Zoological science》2010,27(11):856-860
The large-male mating advantage and size-assortative mating are two different size-based patterns, which deviate from random mating in toads. These two pairing patterns may arise due to female choice, male-male competition, male choice, or a combination of these. This study investigated the mating system of Minshan's toad (Bufo minshanicus) from three populations along an altitudinal gradient during two breeding reasons in the northeastern Tibetan plateau. Our study shows that males found in amplexus with females were larger on average than non-amplectant males in two sites with higher operational sex ratios. Similarly, in those sites, males and females found in amplexus maintained an optimal size ratio. These data suggest that male-male competition leads to size-assortative mating in the lack of mate choice (female and male mate choice) by Minshan's toad, as larger males performed higher frequencies for taking-over other low quality ones with amplectant females.  相似文献   

20.
Natal dispersal is usually sex biased in birds and mammals.Female-biased natal dispersal is the prevailing pattern in birdsbut is rare among mammals. Hypotheses explaining sex bias indispersal include the mate-defense mating hypothesis, whichpredicts male-biased dispersal, the resource-defense hypothesispredicting female-biased dispersal, and the competition hypothesis,which predicts that if dispersal is caused by competition forresources between sexes, then the subdominant sex will disperse.We studied natal dispersal of Siberian flying squirrels Pteromysvolans using radio telemetry in Southern Finland in 1996–2004.Of 86 juveniles that survived over the dispersal period, almostall young females dispersed from the natal site, whereas almost40% of males were philopatric. Dispersal was farther for femalesthan males. Females began dispersal on average 2 weeks earlierthan males and were lighter in mass at the onset of dispersalthan later dispersing males. No mate- or resource-defense matingsystem could be found among males, but females seemed to defendnest and apparently food resources, in contrast to the expectationof dispersal bias in resource-defense systems. Competition forresources between sexes does not explain female bias either:in the flying squirrel, the female seems to be the dominantsex. We propose that young females are subordinate to theirmothers and have to disperse to find a vacant, suitable sitefor reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号