首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Li Y  Ren B  Yang X  Xu G  Shen Q  Guo S 《Plant & cell physiology》2012,53(5):892-900
The phenomenon whereby ammonium enhances the tolerance of rice seedlings (Oryza sativa L., cv. 'Shanyou 63' hybrid indica China) to water stress has been reported in previous studies. To study the intrinsic mechanism of biomass synthesis related to photosynthesis, hydroponic experiments supplying different nitrogen (N) forms were conducted; water stress was simulated by the addition of polyethylene glycol. Water stress decreased leaf water potential (Ψ(leaf)) under nitrate nutrition, while it had no negative effect under ammonium nutrition. The decreased Ψ(leaf) under nitrate nutrition resulted in chloroplast downsizing and subsequently decreased mesophyll conductance to CO(2) (g(m)). The decreased g(m) and stomatal conductance (g(s)) under nitrate nutrition with water stress restrained the CO(2) supply to the chloroplast and Rubisco. The relatively higher distribution of leaf N to Rubisco under ammonium nutrition might also be of benefit for photosynthesis under water stress. In conclusion, chloroplast downsizing induced a decline in g(m), a relatively higher decrease in g(s) under nitrate nutrition with water stress, restrained the CO(2) supply to Rubisco and finally decreased the photosynthetic rate.  相似文献   

2.
Relative competition among various plant parts for N during water stress,i.e. nitrogen distribution index (NDI) was determined in relation to specific nitrogenase activity (SNA) and nodule and soil nitrogen in both indeterminate (H-77-216) and determinate (ICPL-151) types of pigeonpea (Cajanus cajan L.) under greenhouse conditions. Two levels of water stress,i.e. moderate (soil Ψw) -0.77 MPa) and severe (soilΨw -1.34 MPa) were created by witholding the irrigation at vegetative (40 DAS) and flowering (70 DAS) stages. At vegetative stage under moderate stress the highest NDI was in nodules of cv. H-77-216 and in leaf of cv. ICPL-151. Under severe stress both the cultivars showed negative values of NDI, with maximum loss of N from root and nodules. Cultivar ICPL-151 behaved differently at flowering and vegetative stages. Very high loss of N from different plant parts was seen at flowering under severe stress. All the plant parts showed gain in N during rehydration. Loss and gain in N at both the stages under stress and rehydration respectively, correlated with available N in soil. Specific nitrogenase activity (SNA) and nodule N were maximum at moderate stress and related with NDI values of leaf and nodules.  相似文献   

3.
An investigation was carried out to find out the extent of changes occurred in two safflower (Carthamus tinctorius L.) cultivars in response to water deficit stress. Two safflower cultivars namely IL.111 and Isfahan were used for the study. Thirty days after sowing, plants were grown under soil moisture corresponding to 100, 85, 70 and 55% field capacity for next 30 days. Water deficit treatments significantly decreased the shoot length, shoot dry matter, root dry matter, relative growth rate, leaf relative water content (LRWC) and leaf water potential (ΨW), whereas root length, root-to-shoot ratio, lipid peroxidation and antioxidant compounds such as ascorbic acid (AA), α-tocopherol (α-Toc) and reduced glutathione (GSH) and superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), and peroxidase (POX, EC 1.11.1.7) activities were increased. Water deficit stressed plants maintained higher levels of compounds and scavenging enzymes. Significant differences were observed between cultivars and irrigation levels treatments. The cv. IL.111 could be considered more tolerant to water stress than cv. Isfahan, registering greater biomass, LRWC and leaf water potential (ΨW), associated with high antioxidant activity.  相似文献   

4.
Leaf hydraulic conductance (K(leaf)) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of K(leaf) with decreasing leaf water potential (Ψ(leaf)), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in K(leaf) with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψ(leaf) at 80% loss of K(leaf) (P(80)), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P(80). Across species, the maximum K(leaf) was independent of hydraulic vulnerability. Recovery of K(leaf) after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P(80) correlated with the ability to maintain K(leaf) through both dehydration and rehydration. These findings indicate that resistance to K(leaf) decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery.  相似文献   

5.
Decrease in soil water potential during vegetative and flowering stages of two cultivars of pipeon pea (Cajanus cajari) caused higher decrease in relative water content in cv. ICPL-151 than in cv. H-77-216. Both cultivars showed partial recovery during rehydration. Cv. H-77-216 also accumulated more proline and carbohydrates during stress and showed better drought tolerance than cv. ICPL-151.  相似文献   

6.
Complex study of the effect of soil drought (72 h) and subsequent rehydration for 24 and 48 h on the activities of antioxidant and osmoprotective systems in the leaves of young plants of winter wheat (Triticum aestivum L.) cvs. Ballada (high productivity) and Beltskaya (low productivity) was carried out. Under drought conditions, the content of water in the leaves of cv. Ballada reduced to a lesser degree than in the leaves of cv. Beltskaya. Drought did not affect the rate of leaf growth in cv. Ballada but retarded leaf growth in cv. Beltskaya. Under drought conditions, the content of ascorbate reduced in cv. Beltskaya but was not changed in cv. Ballada; the content of glutathione increased by 19% in cv. Ballada and by 30% in cv. Beltskaya. Under drought conditions, ascorbate peroxidase activity was not changed in cv. Ballada whereas in cv. Beltskaya there was a tendency to its decrease. Glutathione reductase activity in the leaves of cv. Beltskaya increased stronger than in cv. Ballada. Substantial differences between cultivars in the accumulation of reducing sugars and sucrose under water deficit were observed. In both cultivars, drought induced an active proline accumulation. Observed differences in the cultivar responses to water stress evidently indicate differences in the strategy of their adaptation to drought. Drought did not affect the contents of chlorophyll and MDA in both cultivars. The data obtained allow a suggestion that, under conditions of moderate soil drought, the coordinated system of antioxidant defense and osmotic control functioned sufficiently effective; as a result, oxidative stress was not developed in both cultivars. Young plants of both cultivars differing in their responses to water deficit retained the ability to recover after rehydration.  相似文献   

7.
In this article, we measured the relative growth rate (RGR) of leaves of Robinia pseudoacacia seedlings under well-watered and water-stressed conditions (mid-day Ψ(w) = leaf water potential estimated with a pressure bomb of -0.48 and -0.98 MPa, respectively). Pressure-volume (PV) curves were done on growing leaves at 25, 50 and 95% of the mature size (growth stage) in order to compute solute potential (Ψ) and turgor pressure (Ψ(P) ) as a function of Ψ(w) . The PV curves and diurnal measurements of Ψ(w) and RGR allowed us to evaluate the parameters (cell wall extensibility m and growth turgor threshold Y) of the Lockhart equation, RGR = m(Ψ(P)-Y), at each growth stage. Our data showed that m and Y did change with leaf age, but the changes were slow enough to evaluate m and Y on any given day. We believe this is the first study to provide evidence that the Lockhart equation adequately quantifies leaf growth of trees over a range of time domains. The value of m linearly declined and Y linearly increased with growth stage. Also, mild drought stress caused a decline in m and increase in Y relative to controls. Although water stress caused an osmotic adjustment which, in turn, increased Ψ(P) in stressed plants relative to controls, the RGR and final leaf sizes were reduced in water-stressed plants because of the impact of water stress on decreased m and increased Y.  相似文献   

8.
Three cultivars differing in their susceptibility to water stress were compared—Phaseolus vulgaris cv. Carioca (susceptible), Vigna unguiculata cv. IT83D (intermediately tolerant) and V. unguiculata cv. EPACE-1 (tolerant)—during an imposed water stress treatment. Variation in leaf gas exchange (i.e. assimilation and stomatal conductance) and leaf relative water content in response to progressive substrate water depletion were investigated. To verify the extent of the injury caused by the drought treatment, leaf gas exchange was measured after rehydration. In the three cultivars, stomatal conductance declined before leaf relative water content was affected. P. vulgaris showed the largest decrease in the rate of stomatal conductance with decreasing substrate water content compared to both V. unguiculata cultivars. Photosynthetic assimilation rates were largely dependent on stomatal aperture, but there was evidence of the participation of non-stomatal factors in the reduction of CO2 fixation. The response of leaf gas exchange parameters to severe water stress conditions differed significantly between P. vulgaris and V. unguiculata cultivars. After rehydration, cultivars can be characterised according to the degree of injury induced by the drought treatment: V. unguiculata cv. EPACE-1 as the least affected, V. unguiculata cv. IT83D slightly affected and P. vulgaris cv. Carioca strongly affected. Similar ranking was obtained with experiments previously performed at a cellular and subcellular level. Our results confirm the utility of physiological parameters as early screening tools for drought resistance in bean cultivars.  相似文献   

9.
Dioon edule seedling mortality is mostly attributed to dehydration by prolonged drought, even when they present xeromorphic characteristics like the adult plants. The effect of germination date (GD) and soil water deficit on seedling tolerance to water stress was assessed. The seedlings germinated and grown from mature seeds every month from December to April GD were selected to evaluate the leaf area, photosynthetic pigment content, crassulacean acid metabolism (CAM) activity, stomatal conductance (gs) and leaflet anatomy at soil water potential (Ψs) of 0.0 MPa (day 1), ?0.1 MPa (day 40), ?1.0 MPa (day 90), ?1.5 MPa (day 130), and a control (0.0 MPa at day 130) to recognize differences due to leaf development. The seedlings shifted from C3 to CAM cycling when exposed to water stress at Ψs of ?1.0 MPa, like adult plants. The March–April GD seedlings with undeveloped sclerified hypodermis and stomata, presented reduced leaf area, lower Chlorophyll a/b ratio, higher CAM activity and midday partial stomatal closure when reached Ψs of ?1.0 MPa. These have higher probability of dehydration during severe drought (February–April) than those of the December–February GD with similar Ψs. Plants used for restoration purposes must have full leaf development to increase the survival.  相似文献   

10.
11.
在田间试验条件下研究了群体不同分布对夏大豆产量构成和水分利用的影响.夏大豆‘鲁豆4号'(Glycine max cv. Ludou 4)在同一群体密度(3.09×10~5株/hm~2)下设5种分布方式,即行距×株距分别为A:18 cm×18 cm,B:27 cm×12 cm,C:36 cm×9 cm,D:45 cm×7.2 cm,E:54 cm×6cm.结果表明,群体分布影响夏大豆的产量、叶片水分特征和水分利用效率(WUE).A、B处理的产量显著高于D、E处理(P<0.05),其他处理间均无显著差异;随着行距加大,单株有效荚数、粒数及百粒重呈下降趋势;叶片相对含水量(RWC)、水势(Ψw)和渗透势(Ψs)随生育进程的推进呈整体下降趋势,其中,A、B处理RWC、Ψw 和Ψs的平均值均显著高于D、E处理,E处理的Ψw在日变化的正午阶段明显低于其他处理;WUE与行距呈负相关(R=-0.935~*),与产量呈正相关(R=0.997~(**)),其中,A、B处理的WUE显著高于其他处理(P<0.05),D、E处理极显著低于B处理(P<0.01).夏大豆植株相对均匀分布的处理可改善产量构成因素及叶片水分状况,进而形成较高的产量,提高水分利用效率.  相似文献   

12.
Four wheat varieties differing in their drought tolerance were subjected to severe but recoverable water stress at seedling stage. Growth parameters, leaf water deficit (WD) and electrolyte leakage (EL) were used to evaluate the stress intensity and the extent of recovery. The physiological response of the varieties was quite similar under severe drought. Leaf protein patterns and levels of some individual proteins relevant to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) maintenance were studied in control, stressed and recovering plants by electrophoresis and immunoblotting. The bands representing Rubisco large subunit (RLS), N- and C-terminus of RLS, Rubisco activase (RA) and Rubisco binding protein (RBP, cpn 60), as well as the chaperone and proteolytic subunits of the Clp protease complex were identified using polyclonal antibodies. Under drought conditions RLS, Clp proteases and especially RBP were enhanced, whereas the RA band was only slightly affected. The drought tolerant varieties had higher RBP content in the controls and drought treated plants. Its concentration could be a potential marker for drought tolerance.  相似文献   

13.
Pressure–volume (P–V) curves are frequently used to analyze water relation properties of woody plants in response to transpiration-induced tissue water loss. In this study, P–V analyses were conducted on eight woody species growing in the semiarid Loess Plateau region of China during a relatively dry summer season using both the recently recommended instantaneous measurement and the traditional method with rehydration pretreatment. Generally, P–V-derived parameters in this study reflected conditions in a dry growth environment. Species-specific differences were also found among P–V parameters, suggesting each species uses different mechanisms to respond to drought. Based on the results from instantaneous measurements, a descending sequence for drought tolerance ranked by water potentials at the turgor loss point (Ψtlp) was Rosa hugonis > Syringa oblata = Armeniaca sibirica > Caragana microphylla > Pyrus betulaefolia > Acer stenolobum > Quercus liaotungensis > Robinia pseudoacacia. The first five species also showed lower levels of osmotic potential at full turgor (Ψ π sat ) and higher symplastic osmotic solute content per dry weight, suggesting they possess advantages in osmotic adjustment. Also, this study supports previous reports noting rehydration pretreatment resulted in shifts in P–V parameters. The magnitude of the shifts varied with species and water conditions. The effect of rehydration was stronger for species with higher drought tolerance or subjected to the influence of drought. Differences in the parameters among species were mitigated as a result of rehydration. Those with a lower Ψtlp or midday water potential were more deeply affected by rehydration. Application of instantaneous measurements was strongly recommended for proper analysis of P–V curves particularly in arid and semiarid areas.  相似文献   

14.
The possible role of water expelled from cavitated xylem conduits in the rehydration of water-stressed leaves has been studied in one-year-old twigs of populus deltoides Bartr. Twigs were dehydrated in air. At desired values of leaf water potential (Ψl) (between near full turgor and -1.62 MPa), twigs were placed in black plastic bags for 1–2h. Leaf water content was measured every 3–5 min before bagging and every 10 min in the dark. Hydraulic conductivity and xylem cavitation were measured both in the open and in the dark. Cavitation was monitored as ultrasound acoustic emissions (AE). A critical Ψl value of -0.96 MPa was found, at which AE increased significantly while the leaf water deficit decreased by gain of water. Since the twigs were no longer attached to roots, it was concluded that water expelled from cavitated xylem conduits was transported to the leaves, thus contributing to their rehydration. Xylem cavitation is discussed in terms of a ‘leaf water deficit buffer mechanism’, under not very severe water stress conditions.  相似文献   

15.
Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.  相似文献   

16.
M. Ashraf 《Plant and Soil》1989,119(2):205-210
The physiological basis of salt tolerance of two cultivars of blackgram, cv Candhari Mash (relatively salt tolerant) and cv Mash 654 (salt sensitive), was assessed in salinized sand culture at the flowering stage. Increasing NaCl concentration in the rooting medium significantly reduced the chlorophyll a, chlorophyll b, and total chlorophyll, leaf water potential (Ψw), leaf solute potential (Ψs), and leaf turgor potential (Ψp) in both the cultivars. Leaf protein and proline content was increased as a result of increasing salt concentration in both cultivars. High salt concentrations had no significant effect on the seed protein content of both cultivars. At high salinities, cv Candhari Mash had significantly greater chlorophyll a, chlorophyll b and total chlorophyll, leaf water potential, solute potential, and turgor potential than cv Mash 654, but the latter had greater leaf proline content than cv Candhari Mash. Cultivars did not differ significantly for both leaf and seed protein contents. The relatively salt tolerant cv Candhari Mash maintained high leaf water potential and turgor potential to resist salt injury. Leaf proline content had negative correlation with salt tolerance in blackgram.  相似文献   

17.
Responses of the epidermal diffusive conductance (gep) to irradiance (I) during ontogeny of primary bean leaves or during their wilting were followed. Effects ofI, leaf age and leaf water potential (Ψw) as well as interactive effects (I × leaf age andI × Ψw) ongep were statistically significant.  相似文献   

18.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   

19.
Partial nitrate nutrition (PNN) was found to improve rice (Oryza sativa L. var. japonica) growth. However, how PNN is related to photosynthesis in rice cultivars with different nitrogen use efficiency (NUE) is still not clear. Two rice cultivars, Nanguang (high NUE) and Elio (low NUE), were grown under sole NH4 + and PNN at a total nitrogen concentration of 2.86 mM. The dry weight, leaf area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and gas exchange parameters were measured. Nitrogen and Rubisco contents in the newly expanded leaves of cv. Nanguang were similar to those of cv. Elio when only NH4 + was supplemented in the nutrient solution. However, in cv. Nanguang, nitrogen and Rubisco contents increased under PNN than under sole NH4 + nutrition. Higher nitrogen and Rubisco contents were recorded in cv. Nanguang than in cv. Elio under PNN. The ratio of carboxylation efficiency (CE) to Rubisco content in cv. Nanguang was 11 and 14% higher than that in cv. Elio under NH4 + and PNN, respectively. CE was 14% higher in cv. Nanguang than that in cv. Elio. The results suggest that PNN causes an increase in photosynthesis in cv. Nanguang. It is concluded that differences in Rubisco activity, rather than stomatal limitation, are responsible for the differences in photosynthesis between the two cultivars. The presence of nitrate increases Rubisco content in rice with a high NUE, which leads to faster biomass accumulation at later growth stages.  相似文献   

20.
Growth behaviour, proline changes and water saturation deficit (WSD) changes were studied in two maize cultivars, Agati-76, a drought resistant oultivar, and cv. Vijay, a susceptible one after stress conditions were removed. Plants of both the cultivars showed a tendency to recover during rehydration. Phenotypically the plants appeared just normal on 7th day of rehydration, although recovery was never complete. Significant positive correlation existed between free proline content and concomitant change in water saturation deficit. Significantly higher proline content in cv. Agati-76 was reoorded in cv. Vijay, immediately after the stress was released, thereafter continuous decline was observed up to 7th day of rehydration in both the cultivars. Proline changes in relation to recovery of plants from stress conditions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号