首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m(2) of cloth) for small targets plus flanking nets is 5.5-15X greater than for 1 m(2) targets and 8.6-37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness.  相似文献   

2.
Davis S  Aksoy S  Galvani A 《Parasitology》2011,138(4):516-526
African sleeping sickness is a parasitic disease transmitted through the bites of tsetse flies of the genus Glossina. We constructed mechanistic models for the basic reproduction number, R0, of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively the causative agents of West and East African human sleeping sickness. We present global sensitivity analyses of these models that rank the importance of the biological parameters that may explain variation in R0, using parameter ranges based on literature, field data and expertize out of Uganda. For West African sleeping sickness, our results indicate that the proportion of bloodmeals taken from humans by Glossina fuscipes fuscipes is the most important factor, suggesting that differences in the exposure of humans to tsetse are fundamental to the distribution of T. b. gambiense. The second ranked parameter for T. b. gambiense and the highest ranked for T. b. rhodesiense was the proportion of Glossina refractory to infection. This finding underlines the possible implications of recent work showing that nutritionally stressed tsetse are more susceptible to trypanosome infection, and provides broad support for control strategies in development that are aimed at increasing refractoriness in tsetse flies. We note though that for T. b. rhodesiense the population parameters for tsetse - species composition, survival and abundance - were ranked almost as highly as the proportion refractory, and that the model assumed regular treatment of livestock with trypanocides as an established practice in the areas of Uganda experiencing East African sleeping sickness.  相似文献   

3.
A field trial in Zimbabwe investigated the efficacy of insecticide-treated cattle as a barrier to prevent the re-invasion of tsetse, Glossina morsitans and G. pallidipes (Diptera: Glossinidae), into cleared areas. The original tsetse barrier consisted of insecticide-treated odour-baited targets, at an operational density of four to five targets per km2, supported by insecticide-treatments of cattle with either deltamethrin dip (Decatix, Coopers) at two-weekly intervals, or deltamethrin pouron (Spoton, Coopers) at monthly intervals, in a band approximately 20 km wide from the re-invasion front. Tsetse catch, and trypanosomiasis incidence in nine sentinel herds was recorded for 7-8 months, respectively, before the targets were removed, leaving only the insecticide treatment of the local cattle to stem the re-invasion of tsetse. After the removal of the target barrier, the tsetse readily invaded the trial area and the incidence of trypanosomiasis in sentinel herds increased, while their PCVs decreased. After seven months without the targets in place, trypanosomiasis prevalence in the local stock had reached alarmingly high levels; the trial was terminated prematurely and the target barrier re-deployed. Immediately after the re-deployment of the target barrier, the tsetse catch in the trial area reverted to acceptable levels along the re-invasion front, and trypanosomiasis incidence in the sentinel cattle decreased. It is concluded that, under the conditions of the field trial, the insecticidal treatment of local cattle did not in itself form an effective barrier to tsetse re-invasion. By contrast, the target barrier performed as was predicted by mathematical and experimental analysis, and readily cleared the tsetse infestation and reduced trypanosomosis incidence in the trial area.  相似文献   

4.
The African trypanosomiasis are among Africa's most devastating diseases. The human disease, sleeping sickness, and the animal disease, nagana, are caused by trypanosomes, protozoan parasites transmitted by tsetse flies, Glossina spp. Attempts have been made to control tsetse and trypanosomiasis for over 70 years, supported by ever-increasing amounts of foreign aid. Although progress has been made in the control of sleeping sickness, this disease still persists in many countries. Nogono excludes cattle from many of the potentially most productive areas of Africa and is a major constraint on economic development. In this paper, Robert Dransfield, Brian Williams and Robert Brightwell review the control of tsetse and trypanosomiasis in the light of recent progress in our understanding of tsetse population dynamics, with special reference to the experience gained in tsetse control on a Maasai ranch at Ngurumon in the Rift Valley of Kenya, and make suggestions for the management and funding of future control programmes in relation to rural development.  相似文献   

5.
Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.  相似文献   

6.
Abstract. Village-scale trials were carried out in southern Mexico to compare the efficacy of indoor-spraying of the pyrethroid insecticide lambda-cyhalothrin applied either as low-volume (LV) aqueous emulsion or as wettable-powder (WP) aqueous suspension for residual control of the principal coastal malaria vector Anopheles albimanus. Three indoor spray rounds were conducted at 3-month intervals using back-pack mist-blowers to apply lambda-cyhalothrin 12.5 mg a.i./m2 by LV, whereas the WP was applied by conventional compression sprayer at a mean rate of 26.5 mg a.i./m2.
Both treatments caused mosquito mortality indoors and outdoors (collected inside house curtains) as a result of contact with treated surfaces before and after feeding, but had no significant impact on overall population density of An. albimanus resting indoors or assessed by human bait collections. Contact bioassays showed that WP and LV treatments with lambda-cyhalothrin were effective for 12–20 weeks (>75% mortality) without causing excito-repellency.
Compared to the WP treatment (8 houses/man/day), LV treatment (25 houses/man/day) was more than 3 times quicker per house, potentially saving 68% of labour costs. This is offset, however, by the much lower unit price of a compression sprayer (e.g. Hudson 'X-pert' at US120) than a mist-blower (e.g. 'Super Jolly' at US350), and higher running costs for LV applications. It was calculated, therefore, that LV becomes more economical than WP after 18.8 treatments/100 houses/10 men at equivalent rates of application, or after 7.6 spray rounds with half-rate LV applications.  相似文献   

7.
BackgroundRiverine species of tsetse are responsible for most human African trypanosomiasis (HAT) transmission and are also important vectors of animal trypanosomiasis. This study concerns the development of visual control devices for two such species, Glossina fuscipes fuscipes and Glossina tachinoides, at the eastern limits of their continental range. The goal was to determine the most long-lasting, practical and cost-effective visually attractive device that induces the strongest landing responses in these species for use as insecticide-impregnated tools in vector population suppression.Conclusions/SignificanceTaking into account practical considerations and fly preferences for edges and colours, we propose a 0.5×0.75 m blue-black target as a simple cost-effective device for management of G. f. fuscipes and G. tachinoides, impregnated with insecticide for control and covered with adhesive film for population sampling.  相似文献   

8.
Our understanding of Glossina fuscipes fuscipes, a major vector of sleeping sickness, has been severely constrained by a lack of genetic markers for mapping and population genetic studies. Here we present 10 newly developed microsatellite loci for this tsetse species. Heterozygosity levels in Moyo, an Ugandan population, averaged 0.57, with only two loci showing very low heterozygosity. Five loci carried more than six alleles. Together with five recently published microsatellite loci, this brings the number of available microsatellite loci for this species to 15. Their availability will greatly facilitate future studies on the genetics of this important human disease vector.  相似文献   

9.

Background

In Uganda, Rhodesian sleeping sickness, caused by Trypanosoma brucei rhodesiense, and animal trypanosomiasis caused by T. vivax and T. congolense, are being controlled by treating cattle with trypanocides and/or insecticides. We used a mathematical model to identify treatment coverages required to break transmission when host populations consisted of various proportions of wild and domestic mammals, and reptiles.

Methodology/Principal Findings

An Ro model for trypanosomiasis was generalized to allow tsetse to feed off multiple host species. Assuming populations of cattle and humans only, pre-intervention Ro values for T. vivax, T. congolense, and T. brucei were 388, 64 and 3, respectively. Treating cattle with trypanocides reduced R 0 for T. brucei to <1 if >65% of cattle were treated, vs 100% coverage necessary for T. vivax and T. congolense. The presence of wild mammalian hosts increased the coverage required and made control of T. vivax and T. congolense impossible. When tsetse fed only on cattle or humans, R 0 for T. brucei was <1 if 20% of cattle were treated with insecticide, compared to 55% for T. congolense. If wild mammalian hosts were also present, control of the two species was impossible if proportions of non-human bloodmeals from cattle were <40% or <70%, respectively. R 0 was <1 for T. vivax only when insecticide treatment led to reductions in the tsetse population. Under such circumstances R 0<1 for T. brucei and T. congolense if cattle make up 30% and 55%, respectively of the non-human tsetse bloodmeals, as long as all cattle are treated with insecticide.

Conclusions/Significance

In settled areas of Uganda with few wild hosts, control of Rhodesian sleeping sickness is likely to be much more effectively controlled by treating cattle with insecticide than with trypanocides.  相似文献   

10.

Background

When taking a bloodmeal from humans, tsetse flies can transmit the trypanosomes responsible for sleeping sickness, or human African trypanosomiasis. While it is commonly assumed that humans must enter the normal woodland habitat of the tsetse in order to have much chance of contacting the flies, recent studies suggested that important contact can occur due to tsetse entering buildings. Hence, we need to know more about tsetse in buildings, and to understand why, when and how they enter such places.

Methodology/Principal Findings

Buildings studied were single storied and comprised a large house with a thatched roof and smaller houses with roofs of metal or asbestos. Each building was unoccupied except for the few minutes of its inspection every two hours, so focusing on the responses of tsetse to the house itself, rather than to humans inside. The composition, and physiological condition of catches of tsetse flies, Glossina morsitans morsitans and G. pallidipes, in the houses and the diurnal and seasonal pattern of catches, were intermediate between these aspects of the catches from artificial refuges and a host-like trap. Several times more tsetse were caught in the large house, as against the smaller structures. Doors and windows seemed about equally effective as entry points. Many of the tsetse in houses were old enough to be potential vectors of sleeping sickness, and some of the flies alighted on the humans that inspected the houses.

Conclusion/Significance

Houses are attractive in themselves. Some of the tsetse attracted seem to be in a host-seeking phase of behavior and others appear to be looking for shelter from high temperatures outside. The risk of contracting sleeping sickness in houses varies according to house design.  相似文献   

11.
Tsetse flies (genus Glossina) are the only vector for the parasitic trypanosomes responsible for sleeping sickness and nagana across sub‐Saharan Africa. In Uganda, the tsetse fly Glossina fuscipes fuscipes is responsible for transmission of the parasite in 90% of sleeping sickness cases, and co‐occurrence of both forms of human‐infective trypanosomes makes vector control a priority. We use population genetic data from 38 samples from northern Uganda in a novel methodological pipeline that integrates genetic data, remotely sensed environmental data, and hundreds of field‐survey observations. This methodological pipeline identifies isolated habitat by first identifying environmental parameters correlated with genetic differentiation, second, predicting spatial connectivity using field‐survey observations and the most predictive environmental parameter(s), and third, overlaying the connectivity surface onto a habitat suitability map. Results from this pipeline indicated that net photosynthesis was the strongest predictor of genetic differentiation in G. f. fuscipes in northern Uganda. The resulting connectivity surface identified a large area of well‐connected habitat in northwestern Uganda, and twenty‐four isolated patches on the northeastern margin of the G. f. fuscipes distribution. We tested this novel methodological pipeline by completing an ad hoc sample and genetic screen of G. f. fuscipes samples from a model‐predicted isolated patch, and evaluated whether the ad hoc sample was in fact as genetically isolated as predicted. Results indicated that genetic isolation of the ad hoc sample was as genetically isolated as predicted, with differentiation well above estimates made in samples from within well‐connected habitat separated by similar geographic distances. This work has important practical implications for the control of tsetse and other disease vectors, because it provides a way to identify isolated populations where it will be safer and easier to implement vector control and that should be prioritized as study sites during the development and improvement of vector control methods.  相似文献   

12.
For malaria vector control in Madagascar, the efficacy of lambda-cyhalothrin 10% wettable powder (ICON 10 WP) was compared with DDT 75% WP for house-spraying. This evaluation was conducted from November 1997 to September 1998 in highland villages of Vakinankaratra Region, at the fringe of the malaria epidemic zone, outside the zone covered by routine DDT house-spraying (Opération de pulvérisation intro-domiciliaire de DDT: OPID zone). Treatments were compared by house-spraying in four areas: 1) application of DDT 2g ai/m2 and 2) lambda-cyhalothrin 30 mg ai/m2 in previously unsprayed villages; 3) no intervention (control); 4) OPID 5th cycle of DDT 2g ai/m2. The prevalent vector Anopheles funestus almost disappeared from both the DDT and ICON sprayed areas, whereas in the unsprayed (control) area An. funeslus density went up to 60 females per room in April and there were two seasonal peaks of malaria transmission in January and March (see following paper). In the area sprayed with ICON, the parous rate of An. funestus decreased from 47% pre-spray to 39% six months post-spraying, while the parous rate increased in DDT-sprayed area (from 57% pre-spray to 64% six months post-spray). Bioassays of An. funestus on treated walls, six months post-spray, gave mortality rates of 100% on DDT and 90% on ICON. Conversely, ICON appeared to be more effective than DDT on thatched roofs (66% versus 100%, respectively, six months post-spray). In areas sprayed with DDT or ICON the density of An. arabiensis were little affected. This study demonstrated that, under equivalent conditions, both DDT and lambda-cyhalothrin were effective in reducing malaria transmission on the western fringes of the malaria epidemic zone of the malagasy highlands, with a residual effect lasting at least for six months. Lambda-cyhalothrin appeared to be more effective than DDT in reducing the longevity of malaria vectors. In addition to efficacy, the choice of insecticide for malaria vector control should take into account their acceptability by human populations and their toxicity and persistence in the environment.  相似文献   

13.
In tsetse both sexes feed exclusively on the blood of vertebrates for a few minutes every 2-3 days. Tsetse flies seek cover from high temperatures to conserve energy and plants provide shelter for tsetse in all the biotopes they occupy. Recently, tsetse have taken cover in plantations and under the invasive bush Lantana camara that has invaded large areas of the tsetse fly belt of Africa. Flies from such refugia are implicated in sleeping sickness epidemics. In a wind tunnel we show that both foliage and an extract of volatiles from foliage of L. camara attract three tsetse spp. from different habitats: Glossina fuscipes fuscipes (riverine), G. brevipalpis (sylvatic) and G. pallidipes (savannah). Gas chromatography analysis of volatiles extracted from leaves and flowers of L. camara coupled to electroantennograme recordings show that 1-octen-3-ol and beta-caryophyllene are the major chemostimuli for the antennal receptor cells of the three tsetse spp. studied. A binary mixture of these products attracted these flies in the wind tunnel. The gas chromatography linked electroantennograme analysis of the L. camara extracts also show that the antennal receptor cells of the three tsetse spp. respond similarly to groups of volatiles derived from the major biosynthetic and catabolic pathways of plants, i.e. to mono- and sesquiterpenes, to lipoxidation products and to aromatics. Mixtures of these plant volatiles also attracted tsetse in the wind tunnel. These findings show that tsetse flies have conserved a strong sensitivity to volatile secondary products of plants, underlining the fundamental role of vegetation in tsetse survival.  相似文献   

14.
The problem of tsetse-transmitted trypanosomiasis occurs only in sub-Saharan Africa, where it represents a major constraint to socio-economic development. The East African form of sleeping sickness, caused by Trypanosoma brucei rhodensiense, is an acute and fatal disease, whereas the West African form, caused by Trypanosoma brucei gambiense, is generally more chronic and debilitating. The African governments have developed a new initiative, known as the Pan African Tsetse and Trypanosomiasis Eradication Campaign, which seeks to employ an area-wide approach and appropriate fly suppression methods to eradicate tsetse from areas of tsetse infestation, at a time, to ultimately create tsetse-free zones.  相似文献   

15.
The situation of human African trypanosomiasis (sleeping sickness) is poorly known in Gabon. Most of the historical foci have not been investigated for more than 15 years. Few cases are passively recorded from the historical focus of Bendjé; they involved mainly fishermen but determining their contamination site is difficult because of their mobility due to their activity. The presence of these cases in that focus could favour its reactivation if the vector is still there. In order to assess a potential transmission risk in that area, an entomological survey has been carried out in it. Traps were set up during four days in different habitats used by humans during their daily activities. Three species of tsetse flies (Glossina palpalis palpalis, G. pallicera newsteadi and G. caliginea) were caught and two species of trypanosomes (Trypanosoma vivax and T. brucei s.l.) were identified by PCR. These results suggest the presence of an animal transmission cycle. Human-flies contact was confirmed in all type of habitats but no transmission was quantified in the mangrove.  相似文献   

16.

Background

The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units.

Principal Findings

The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f. fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations.

Conclusion/Significance

We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme.  相似文献   

17.
Background

Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies’ productivity, mortality, survival, flight propensity and mating ability and insemination rates.

Results

Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate.

Conclusion

These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.

  相似文献   

18.
Abstract. Because human and animal cases of African trypanosomiasis have been reported in and around the city of Kinshasa for a long time, the likelihood of local transmission was examined. A georeferenced image of the city was produced, based on a satellite image (SPOT 4). Urban, peri-urban and rural areas were delineated. All recent data on captures of Glossina fuscipes quanzensis Pires (Diptera: Glossinidae) between 1999 and 2004, as well as epidemiological data on a 1999 outbreak of human trypanosomiasis by Trypanosoma brucei gambiense in the Kisenso District, were entered in a geographical information system (GIS). Tsetse flies were mainly found along some of the major rivers in the rural and peri-urban area of Kinshasa. Unsupervised classification of the satellite image allowed identification of riverine habitats suitable for tsetse flies and indicated sites where further entomological surveys were needed. The study produced strong indications that local transmission of human trypanosomiasis had occurred in the recent past in the peri-urban zone of Kinshasa.  相似文献   

19.
Puparia of Glossina morsitans centralis (Machado), G.fuscipes fuscipes (Newstead) and G.brevipalpis (Newstead) were incubated at 25 +/- 1 degrees C, 28 +/- 1:25 +/- 1 degrees C, day:night or 29 +/- 1 degrees C throughout the puparial period, and maintained at 70-80% relative humidity. Puparial mortality was higher at 29 than at 25 degrees C (optimum temperature) in all three species, particularly in G.f.fuscipes and G.brevipalpis. Adults of G.m.centralis from puparia incubated at 29 degrees C, and those of this subspecies, G.f.fuscipes and G.brevipalpis from puparia incubated at 28:25 degrees C, day:night or 25 degrees C throughout, were infected as tenerals (27 h old) by feeding them at the same time on goats infected with Trypanosoma congolense (Broden) IL 1180 after the parasites were detected in the wet blood film. Infection rates on day 25 post-infected feed were higher in G.m.centralis from puparia incubated at 29 degrees C and in adults of the three different tsetse species from puparia incubated at 28:25 degrees C, day:night, than in those from puparia incubated at 25 degrees C. However, in G.f.fuscipes the labral and hypopharyngeal infection rates were not significantly different from those of the tsetse produced by puparia kept at 25 degrees C.  相似文献   

20.

Background

Sleeping sickness, or human African trypanosomiasis, is caused by two species of Trypanosoma brucei that are transmitted to humans by tsetse flies (Glossina spp.) when these insects take a bloodmeal. It is commonly assumed that humans must enter the normal woodland habitat of the flies to become infected, but recent studies found that tsetse frequently attack humans inside buildings. Factors affecting human/tsetse contact in buildings need identification.

Methodology/Principal Findings

In Zimbabwe, tsetse were allowed access to a house via an open door. Those in the house at sunset, and those alighting on humans in the house during the day, were caught using hand-nets. Total catches were unaffected by: (i) the presence of humans in the house and at the door, (ii) wood smoke from a fire inside the house or just outside, (iii) open windows, and (iv) chemicals simulating the odor of cattle or of humans. Catches increased about 10-fold with rising ambient temperatures, and during the hottest months the proportion of the total catch that was taken from the humans increased from 5% to 13%. Of the tsetse caught from humans, 62% consisted of female G. morsitans morstans and both sexes of G. pallidipes, i.e., the group of tsetse that normally alight little on humans. Some of the tsetse caught were old enough to be effective vectors.

Conclusion/Significance

Present results confirm previous suggestions that buildings provide a distinctive and important venue for transmission of sleeping sickness, especially since the normal repellence of humans and smoke seems poorly effective in such places. The importance of the venue would be increased in warmer climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号