首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.  相似文献   

2.
3.
Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.  相似文献   

4.
5.
High-voltage electron microscopy   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
According to the concept of the Q-cycle, the H+/e- ratio of the electron transport chain of thylakoids can be raised from 2 to 3 by means of the rereduction of plastoquinone across the cytochrome b6f complex. In order to investigate the H+/e- ratio we compared stationary rates of electron transport and proton translocation in spinach thylakoids both in the presence of the artificial electron acceptor ferricyanide and in the presence of the natural acceptor system ferredoxin+NADP. The results may be summarised as follows: (1) a variability of the H+/e- ratio occurs with either acceptor. H+/e- ratios of 3 (or even higher in the case of the natural acceptor system, see below) are decreased towards 2 if strong light intensity and low membrane permeability are employed. Mechanistically this could be explained by proton channels connecting the plastoquinol binding site alternatively to the lumenal or stromal side of the cytochrome b6f complex, giving rise to a proton slip reaction at high transmembrane DeltapH. In this slip reaction protons are deposited on the stromal instead of the lumenal side. In addition to the pH effect there seems to be a contribution of the redox state of the plastoquinone pool to the control of proton translocation; switching over to stromal proton deposition is favoured when the reduced state of plastoquinone becomes dominant. (2) In the presence of NADP a competition of both NADP and oxygen for the electrons supplied by photosystem I takes place, inducing a general increase of the H+/e- ratios above the values obtained with ferricyanide. The implications with respect to the adjustment of a proper ATP/NADPH ratio for CO2 reduction are discussed.  相似文献   

8.
9.
The performance of high-resolution electron microscopy and electron tomography is usually discussed in terms of two-point resolution, expressing the possibility of perceiving separately two image points of an object. However, the concept resolution obtains another meaning if one uses prior knowledge about the object and the imaging procedure in the form of a parametric model describing the expectations of the observations. The unknown parameters, such as the positions of the components in an object, can be measured quantitatively by fitting this model to the observations. Due to the statistical nature of the experiment, the resulting solutions for the positions of the components and therefore for the distance between the components will never be exact. An alternative to resolution is then the precision with which the distance can be measured. In the present paper, it is shown that the precision depends on the size of the components, the distance between the components, the resolution of the instrument, and the number of electron counts. For electron tomography, it also depends on the orientation of the object with respect to the rotation axis.  相似文献   

10.
The concept of proteins as ‘conducting glassees’ rather than ‘conducting pathways’ is reviewed in the light of recent experimental evidence on biological electron-transfer rates and their dependence on driving force, reorganization energy, and the distance and coupling between partners. The dependence of midpoint potential and reorganization energy on protein dielectric properties is also reviewed.  相似文献   

11.
The freeze-fracture technique consists of physically breaking apart (fracturing) a frozen biological sample; structural detail exposed by the fracture plane is then visualized by vacuum-deposition of platinum-carbon to make a replica for examination in the transmission electron microscope. The four key steps in making a freeze-fracture replica are (i) rapid freezing, (ii) fracturing, (iii) replication and (iv) replica cleaning. In routine protocols, a pretreatment step is carried out before freezing, typically comprising fixation in glutaraldehyde followed by cryoprotection with glycerol. An optional etching step, involving vacuum sublimation of ice, may be carried out after fracturing. Freeze fracture is unique among electron microscopic techniques in providing planar views of the internal organization of membranes. Deep etching of ultrarapidly frozen samples permits visualization of the surface structure of cells and their components. Images provided by freeze fracture and related techniques have profoundly shaped our understanding of the functional morphology of the cell.  相似文献   

12.
DNA electron microscopy   总被引:8,自引:0,他引:8  
  相似文献   

13.
DNA-mediated electron transfer   总被引:1,自引:0,他引:1  
 Electron transfer in DNA has been investigated for decades, but recent experiments highlight our limited fundamental understanding of these processes. Modern electron transfer theory may help to address some of the open mechanistic issues. We summarize and analyze the results of recent experiments from a theoretical perspective. Future research directions are suggested that might help to establish the molecular mechanism(s) for long-range DNA electron transfer. Received, accepted: 5 January 1998  相似文献   

14.
Many oxidoreductases are constructed from (a) local sites of strongly coupled substrate-redox cofactor partners participating in exchange of electron pairs, (b) electron pair/single electron transducing redox centers, and (c) nonadiabatic, long-distance, single-electron tunneling between weakly coupled redox centers. The latter is the subject of an expanding experimental program that seeks to manipulate, test, and apply the parameters of theory. New results from the photosynthetic reaction center protein confirm that the electronic-tunneling medium appears relatively homogeneous, with any variances evident having no impact on function, and that control of intraprotein rates and directional specificity rests on a combination of distance, free energy, and reorganization energy. Interprotein electron transfer between cytochromec and the reaction center and in lactate dehydrogenase, a typical oxidoreductase from yeast, are examined. Rates of interprotein electron transfer appear to follow intraprotein guidelines with the added essential provision of binding forces to bring the cofactors of the reacting proteins into proximity.  相似文献   

15.
Haems are the cofactors of cytochromes and important catalysts of biological electron transfer. They are composed of a planar porphyrin structure with iron coordinated at the centre. It is known from spectroscopy that ferric low-spin haem has one unpaired electron at the iron, and that this spin is paired as the haem receives an electron upon reduction (I. Bertini, C. Luchinat, NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummins Publ. Co., Menlo Park, CA, 1986, pp. 165-170; H.M. Goff, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part I, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 237-281; G. Palmer, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part II, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 43-88). Here we show by quantum chemical calculations on a haem a model that upon reduction the spin pairing at the iron is accompanied by effective delocalisation of electrons from the iron towards the periphery of the porphyrin ring, including its substituents. The change of charge of the iron atom is only approx. 0.1 electrons, despite the unit difference in formal oxidation state. Extensive charge delocalisation on reduction is important in order for the haem to be accommodated in the low dielectric of a protein, and may have impact on the distance dependence of the rates of electron transfer. The lost individuality of the electron added to the haem on reduction is another example of the importance of quantum mechanical effects in biological systems.  相似文献   

16.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

17.
Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads.  相似文献   

18.
A P Somlyo 《Cell calcium》1985,6(1-2):197-212
  相似文献   

19.
Cyanobacteria are the paradigmatic organisms of oxygenic (plant-type) photosynthesis and aerobic respiration. Since there is still an amazing lack of knowledge on the role and mechanism of their respiratory electron transport, we have critically analyzed all fully or partially sequenced genomes for heme-copper oxidases and their (putative) electron donors cytochrome c(6), plastocyanin, and cytochrome c(M). Well-known structure-function relationships of the two branches of heme-copper oxidases, namely cytochrome c (aa(3)-type) oxidase (COX) and quinol (bo-type) oxidase (QOX), formed the base for a critical inspection of genes and ORFs found in cyanobacterial genomes. It is demonstrated that at least one operon encoding subunits I-III of COX is found in all cyanobacteria, whereas many non-N(2)-fixing species lack QOX. Sequence analysis suggests that both cyanobacterial terminal oxidases should be capable of both the four-electron reduction of dioxygen and proton pumping. All diazotrophic organisms have at least one operon that encodes QOX. In addition, the highly refined specialization in heterocyst forming Nostocales is reflected by the presence of two paralogs encoding COX. The majority of cyanobacterial genomes contain one gene or ORF for plastocyanin and cytochrome c(M), whereas 1-4 paralogs for cytochrome c(6) were found. These findings are discussed with respect to published data about the role of respiration in wild-type and mutated cyanobacterial strains in normal metabolism, stress adaptation, and nitrogen fixation. A model of the branched electron-transport pathways downstream of plastoquinol in cyanobacteria is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号