首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Makris  D Olsen  K J Ryan 《Steroids》1983,42(6):641-651
Isolated hamster granulosa cells and theca from preovulatory follicles were incubated in vitro for 2 and 6 h in the absence/or presence of LH and steroid substrates. The purpose of the experiments was to determine, in theca, the relative activities of the delta 5 and delta 4 pathways under controlled conditions, and to compare the ability of granulosa cells and theca to form progesterone from exogenous pregnenolone. The results of the experiments show that the delta 5 pathway in theca predominates before and up to 2 h after LH stimulation. The delayed effect of LH after 2 h is a switch from delta 5 to delta 4 as the major metabolic pathway. Progesterone formation from exogenous pregnenolone is 7 to 10 times greater in unstimulated granulosa cells than in theca. Acute effects of LH lead to increased conversion of exogenous pregnenolone to progesterone in granulosa cells but not theca. LH does, however, acutely stimulate the thecal conversion of DHEA to androstenedione. The longer term effect of LH in both cell types is to increase pregnenolone conversion to progesterone.  相似文献   

2.
Bovine theca and granulosa cells interact to promote androgen production   总被引:1,自引:0,他引:1  
Pieces of theca interna or follicle wall (theca interna + attached granulosa cells), obtained from bovine preovulatory follicles prior to the surge of luteinizing hormone (LH) and cultured for 3 days, secreted androstenedione. Luteinizing hormone, but not follicle-stimulating hormone (FSH), increased production of androstenedione 3 to 4-fold. In both the presence and absence of LH, follicle wall preparations secreted about 4-fold more androstenedione than did equivalent amounts of theca interna tissue. Isolated granulosa cells produced only negligible quantities of androstenedione, which suggests that they may contribute to the greater production of androstenedione by follicle wall by supplying progestin precursor to the theca cells. The addition of pregnenolone or progesterone to isolated theca interna increased the secretion of androstenedione, but pregnenolone was by far the more effective precursor. This suggested that the delta 5 (delta 5) pathway is the preferred pathway for androstenedione synthesis by bovine theca cells and that granulosa cells might supply progestin precursor in the form of pregnenolone. Follicle wall and granulosa cell cultures secreted 2 and 7 times more pregnenolone, respectively, than did theca cultures. Luteinizing hormone, but not FSH, increased production of pregnenolone by the follicle wall, whereas the gonadotropins had no effect on secretion by either granulosa or theca cells. Since exogenous testosterone enhanced the production of pregnenolone by granulosa cells, thecal androgen (which is stimulated by LH) may increase the ability of granulosa cells to make pregnenolone and explain the stimulatory effect of LH on pregnenolone secretion by follicle wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
LH was used to stimulate cAMP production in theca cells from the 5 largest preovulatory follicles of hens and this was related to LH-stimulated androstenedione production in the same cells. cAMP production was stimulated by LH to the same extent in theca cells from each follicle. However, LH was not effective in stimulating androstenedione production in theca cells from the largest follicle (T1), although androstenedione production was greatly increased by LH in the smaller follicles (T2-T5). Effects similar to those of LH on cAMP production were observed in response to forskolin, indicating that the intrinsic adenylate cyclase activity was similar in theca cells from each follicle. In addition, forskolin was unable to stimulate androstenedione production by T1 cells. Our results provide evidence that the levels of receptor-mediated and non-receptor-mediated cAMP production are similar in theca cells from the 5 largest follicles. We conclude that the step that restricts the ability of T1 cells to produce androgen is distal to cAMP generation.  相似文献   

4.
The preovulatory surge of gonadotropins induces meiotic maturation of the oocyte, the follicular/luteal phase shift in hormone production, and ovulation. This complex and rapid series of developmental changes is difficult to study in large mammals, such as primates and ruminants, because variability in the length of individual reproductive cycles makes it virtually impossible to predict the time of the LH surge. We have validated an experimental model for inducing the LH surge and ovulation in cattle and used it to study the sequence of changes in hormone secretion and some of the mechanisms of these changes. Luteolysis and a follicular phase were induced by injection of prostaglandin F(2alpha); injection of a GnRH analogue 36 h later induced an LH surge and ovulation. The LH surge peaked 2 h after GnRH and ovulation followed 22-31 h after the surge, consistent with the periovulatory interval in natural cycles. The ensuing luteal phase was normal, both in length and in concentrations of circulating progesterone. In experiment I, the uteroovarian effluent was collected, via cannulation of the vena cava, at frequent intervals relative to GnRH injection. Circulating estradiol declined progressively after GnRH, reaching a nadir by 8-10 h before ovulation, whereas concentrations of androstenedione and testosterone remained constant. In experiment II, preovulatory follicles were obtained at 0, 3.5, 6, 12, 18, or 24 h after GNRH: Concentrations of androgens and estradiol were measured in follicular fluid and medium from cultures of follicle wall (theca + granulosa cells); steady-state levels of mRNA for 17alpha-hydroxylase (17alphaOH) and P450 aromatase were measured in follicular tissue. Shortly after the LH surge (3.5 h post-GnRH) there was an acute increase in the capacity of follicular tissue to secrete androstenedione, but not estradiol, in vitro. Thereafter, both androgens and estradiol declined, both in follicular fluid and in medium collected from cultures of follicle wall. Levels of mRNA for 17alphaOH and aromatase in follicle wall decreased significantly by 6 h after GnRH, suggesting that declining levels of these enzymes underlie the decreases in steroid production by follicular cells. These results show that in cattle the preovulatory decrease in follicular estradiol production is mediated by redundant mechanisms, because androgen production and the capacity of granulosa cells to convert androgens to estradiol decline coordinately, in concert with decreases in mRNA for 17alphaOH and P450 aromatase.  相似文献   

5.
Prepubertal female rats were injected s.c. with 5.0 IU eCG, and ovaries were collected 24 and 48 h post-eCG, on Day 25, as well as from an untreated group also on Day 25. Large antral follicles were manually dissected, and the ovarian remnants were incubated with collagenase overnight to liberate preantral follicles from adhering stromal cells. The viability of the follicles was established by normal histology and lack of pyknotic granulosa cells (GCs) and by their ability to secrete steroids. After a 1-h baseline incubation, either 10 ng LH or 100 ng FSH was added for an additional hour, and the media-before and after gonadotropin administration-were used to measure progesterone, androstenedione, and estradiol by RIA. A distinct hierarchy existed in steroid synthesis, with the maximal production by the largest (700 microm) antral follicles. The major steroid that had accumulated after addition of LH at 48 h post-eCG was androstenedione (1099 pg/follicle per hour), followed by equal amounts of progesterone (155 pg/follicle per hour) and estradiol (191 pg/follicle per hour). There was a precipitous drop in steroid production by 550-microm and 400-microm antral follicles, especially in estradiol for the latter-sized follicles (0.08 pg/follicle per hour). Preantral follicles also produced progesterone and androstenedione after addition of LH. For example, follicles 222 microm in diameter with 4-5 layers of GCs and well-developed theca responded to LH at 48 h post-eCG by accumulating androstenedione (37 pg/follicle per hour) and progesterone (6 pg/follicle per hour) but negligible estradiol. The smallest follicles secreting steroids, 110-148 microm in diameter, had 2-4 layers of GCs. However, primary follicles (1 layer of GCs and no theca) did not synthesize appreciable amounts of any steroid. Although small preantral follicles were consistently stimulated by LH, FSH was ineffective. This result differs from findings in the hamster showing that intact preantral follicles with 1-4 layers of GCs and no theca respond to FSH by secreting progesterone in vitro (Roy and Greenwald, Biol Reprod 1987; 31:39-46). The technique developed to collect intact rat follicles should be useful for numerous investigations.  相似文献   

6.
Insertion of osmotic minipumps containing 1 mg ovine LH on Day 1 (oestrus) elevated circulating serum concentrations of LH, progesterone and androstenedione when compared with values at pro-oestrus. Ovulation was blocked for at least 2 days at which time there were twice the normal numbers of preovulatory follicles. Follicular and thecal progesterone production in vitro was elevated when compared with that in pro-oestrous controls. Follicular and thecal androstenedione production in vitro was lower than in controls even though serum concentrations of androstenedione were elevated; the higher androstenedione values may be due to the increase in number of preovulatory follicles when compared with pro-oestrous controls. Follicles from LH-treated hamsters aromatized androstenedione to oestradiol and follicular production of oestradiol was similar to that in pro-oestrous follicles despite low follicular androstenedione production in the LH-treated group. Treatment with 20 i.u. hCG on Days 4 or 6 after insertion of an LH osmotic minipump on Day 1 induced ovulation of approximately 30 ova, indicating that the blockade of ovulation was not due to atresia of the preovulatory follicles. Serum progesterone concentrations on Days 2, 4 and 6 in LH-treated hamsters were greater than 17 nmol/l, suggesting that the blockade of ovulation might have been due to prevention of the LH surge by high serum progesterone concentrations.  相似文献   

7.
8.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

9.
The aims of these studies were: to examine the steroidogenic responses of perifused bovine theca interna to varying flow rates of media and varying amounts of luteinizing hormone (LH), and to compare the steroidogenic outputs of theca interna from follicles of differing size and health with those of other ovarian tissues. The results showed that the outputs of androstenedione by thecae interna from healthy but not atretic follicles, with or without stimulation by LH, were amplified by the flow rate of media. Steroidogenesis by perifused theca interna was also influenced by the mass and concentration of LH as well as by the duration of exposure to LH. When expressed on a per unit mass basis, the outputs of androstenedione from LH-primed thecae interna from small (2-5.5 mm diameter), medium (6-9.5 mm diameter) and large (greater than or equal to 10 mm diameter) healthy follicles were comparable. But when the above data were expressed per total mass of theca interna, the androstenedione output increased significantly with increasing follicular diameter (P less than 0.01). Under the experimental conditions employed, the fraction of androstenedione produced by thecal tissue as a percentage of the total output of progesterone, androstenedione, testosterone and estradiol was 82%, whereas the progesterone, testosterone and estradiol fractions were 1%, 15% and 2%, respectively. By contrast, the granulosa cell output of progesterone, androstenedione, testosterone and estradiol were 79%, 0%, 0% and 21%, respectively. When this cell type was supplied with saturating amounts of androstenedione, it contributed greater than or equal to 90% of the total quantity of estradiol by the two cell types in isolation.  相似文献   

10.
The role of catecholamines in ovarian function of the domestic hen has not been examined extensively. The aim of this study was first to determine the location of catecholamines in the preovulatory follicle of the domestic hen. Second, norepinephrine (NE), epinephrine (EPI) and dopamine (DA) were measured in the isolated theca layer of the five largest preovulatory follicles at specific times during the ovulatory cycle and changes in catecholamine content were correlated with ovarian events. The five largest preovulatory follicles were removed from chickens at 24, 18, 12, 6 and 2 h before ovulation of the largest (F1) follicle. Theca and granulosa layers were isolated, frozen, weighed and prepared for measurements of catecholamines by the double isotope radio-enzymatic assay. Catecholamines were localized primarily in the theca layer with only small amounts present in the granulosa layer. Norepinephrine was present in the theca layer in concentrations 6- and 30-fold those of EPI and DA, respectively. The content of NE and EPI in the theca layer of the F1 follicle was significantly (p less than 0.01) higher at 6 h before ovulation than at other times for the F1 follicle. In contrast, NE and EPI content of the theca layer of second (F2) and third (F3) largest follicles did not change during the ovulatory cycle. The content of DA was elevated (p less than 0.05) at 12 h before ovulation in F1 and F2 follicles. There was a significant reduction in NE in the theca layer of the fifth largest (F5) follicle between 24 and 18 h before ovulation of the F1 follicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The capability of granulosa and theca interna cells, from preovulatory follicles of the domestic hen, to metabolize steroid precursors was evaluated. Granulosa and theca interna cells were isolated from ovarian preovulatory follicles at three different developmental stages: F1, F3 and F5. Tritiated pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA), androstenedione (A4) and testosterone (T) were employed as precursors and their metabolic products were evaluated. The major metabolite of P5 by granulosa cells was P4, but we also observed low amounts of 5β-pregnandione. DHEA metabolism by granulosa cells yielded mainly A4, and minute quantities of 5β-androstan-3,17-dione (5β-dione) were detected. The only significant metabolite obtained in granulosa cells from A4 was 5β-dione, whereas T was only transformed into A4. On the other hand, P5 metabolism by theca interna cells yielded A4 as the main product, also P4, 17α-OHP4, 17α-OHP5, 5β-pregnandione, and DHEA, were found. When DHEA was the precursor A4 was produced in higher amounts than 5β-dione. A4 was mainly transformed into 5β-dione. In similar conditions, T was transformed into A4. These results show that granulosa cells have enzymatic activities of 3β-hydroxysteroid dehydrogenase/5-4 isomerase (3β-HSD from P5 and DHEA), 17β-hydroxysteroid dehydrogenase (17β-HSD from T) and 5β-reductase (from P5, DHEA and A4). Whereas theca interna cells have enzymatic activities of cytochrome P450c17 (from P5 and P4), 3β-HSD (from P5 and DHEA), 17β-HSD (from T) and 5β-reductase (from P4, DHEA and A4). These data support the concept that theca interna cells have the ability to synthesize androgens from progestins produced in granulosa cells. In addition, since theca interna cells did not show the capacity to aromatize androgens suggests that interaction between theca interna and theca externa cells occurs in vivo, thus confirming the three cell model for estrogen production. Furthermore, the fact that other metabolites were produced both in granulosa and theca interna cells, but in a different extent, suggests that complex mechanisms are participating in the regulation of steroid synthesis in avian ovary follicles.  相似文献   

13.
In the turkey, the onset of incubation behavior is associated with altered ovarian steroidogenesis, ovarian regression, decreased, LH secretion, and increased serum prolactin (Prl) levels. To clarify the relative contribution of circulating LH and Prl to the initiation of ovarian regression, laying hens were exposed for 0, 3, 7, or 14 days to a forced molting procedure (exposure to reduced day length of 6L:18D and removal of feed and water for the initial 3 days) that induces ovarian regression and decreased LH levels but does not increase Prl levels. On each of these days, hens were killed and granulosa and theca interna cells from the largest (F1) and fifth largest (F5) preovulatory follicles and total cells from the small white follicles (SWF) were incubated for 5 h in the presence or absence of ovine LH (oLH; 0-1,000 ng/ml). Force-molted hens exhibited diminished levels of circulating LH, Prl, progesterone (P), androgen (A), and estradiol (E) by Day 3 of treatment. Ovarian atresia began in F1 by the third day of treatment, and included F1 and F5 by the seventh day. No preovulatory follicles were present on the fourteenth day. With both F1 and F5 granulosa cells, production of P in the presence of oLH was initially enhanced (Day 3) and later absent (Day 7). In contrast, production of A by F5 theca interna cells in the presence of oLH was initially suppressed (Day 3) and then returned to pretreatment levels (Day 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The cell-free homogenates of the theca layers and granulosa layers of quail follicles were incubated at 39 degrees C with 14C-labeled steroids in the presence of NADPH. At the end of incubation, radioactive steroids were extracted and analyzed by thin-layer chromatography. When radioactive progesterone was employed as the substrate, 17 alpha-hydroxyprogesterone and androstenedione were obtained as the metabolites. 17 alpha-Hydroxylase activity, estimated from the amounts of these two metabolites, was high in the theca layers of the second largest (F2) and the third largest (F3) follicles. The theca layer of the largest follicle (F1) and the granulosa layers of all three follicles were essentially devoid of this enzyme activity. The activity of C17-20 lyase was estimated from the amount of androstenedione that was obtained as a sole metabolite in the incubation of radioactive 17 alpha-hydroxyprogesterone. This enzyme showed a tissue distribution similar to 17 alpha-hydroxylase. When radioactive androstenedione was used as the substrate, testosterone, 5 beta-androstane-3,17-dione, and 3 beta-hydroxy-5 beta-androstan-17-one were identified as the metabolites. 17 beta-Hydroxysteroid dehydrogenase activity, estimated from the amount of testosterone, was higher in the granulosa layers than in the theca layers. On the other hand, 5 beta-reductase activity, estimated from the sum of 5 beta-androstane-3,17-dione and 3 beta-hydroxy-5 beta-androstan-17-one, was almost equally distributed in the two layers. In order to investigate the changes in the enzyme activities during the ovulatory cycle, birds were killed at various times before the predicted ovulation of F1. When the 17 alpha-hydroxylase activity was estimated in the cell-free homogenates of the theca layers, peaks in the activity were observed 32, 42, 54, and 66 h before ovulation of F1. There was a small peak 18 h before ovulation, and activity then started to decrease. The change of C17-20 lyase activity during the cycle was completely parallel with that of 17 alpha-hydroxylase activity.  相似文献   

15.
Granulosa and theca interna cells were isolated from bovine preovulatory ovarian follicles. They were cultured separately but in the same conditions of cell culture. Both cell types, grown as monolayers, were investigated histochemically with special regard to the activity of several hydroxysteroid dehydrogenases: delta53betaOH-SDH, 17betaOH-SDH, 20alphaOH-SDH and G6P-DH. Bovine granulosa and theca interna cells during in vitro culture showed high activity of delta53betaOH-SDH and G6P-DH, the enzymes essential to progesterone biosynthesis. Enzyme pattern of cultured cells indicated continuation in vitro of luteinization, which in the normal preovulatory follicle of the bovine ovary begins prior to ovulation. There was investigated as well the influence of single doses of gonadotrophic hormones and estradiol on growth, lipid contents and enzymic activity of cultured in vitro bovine granulosa and theca interna cells.  相似文献   

16.
In the hen ovary, each preovulatory follicle in the hierarchy, irrespective of its size and the level of its maturity is exposed to the preovulatory LH surge in each ovulatory cycle of an egg laying sequence. In the present study, the thecal weight and membrane protein content of theca layers at different stages of hen ovulatory cycle were assessed. Hens were killed 2 h (stage I), 9 h (stage II), 16 h (stage III), and 23 h (stage IV) after oviposition. The first (F1), second (F2), third (F3), fourth (F4) and fifth (F5) largest yellow follicles were utilized. In all follicles except F1, the thecal weight rose considerably between stages I and III (P < 0.05) followed by a slight cessation of the thecal growth at stage IV. The mean content of the theca membrane protein in F1-F5 follicles was lowest at stage III, increasing at stage IV (P < 0.05), although, in the case of individual follicles the difference was significant (P < 0.05) in F3 follicles only. Estradiol-17beta levels in the plasma were lowest (but not significant) at stage III, and a fourfold increase in the plasma progesterone concentration occurred at stage IV. These findings demonstrate for the first time the ovulatory cycle-related alterations in the thecal weight and membrane protein content in the hen preovulatory follicles. Data suggest that the preovulatory rise in ovarian steroid hormones is probably involved in transient termination of the growth and induction of differentiation of the theca in preovulatory follicles as they pass from one category to the next.  相似文献   

17.
The purpose of this study was to determine if the granulosa cells of the small preovulatory follicles of the domestic hen are a target tissue for follicle-stimulating hormone (FSH). The third largest (F3), fourth largest (F4), and fifth largest (F5) follicles were removed from hens at 20, 12, 6 and 2 h before ovulation of the F1 follicle. Basal, FSH- and luteinizing hormone (LH)-stimulable adenylyl cyclase (AC) activities were measured in the granulosa cells. Isolated granulosa cells of the F5 follicle, obtained 20 h before ovulation of the F1 follicle, were incubated with ovine (o) or turkey (t) FSH and progesterone (P4) was assayed in the medium. Basal AC activity was similar for F5, F4 and F3 granulosa cells except for an increase (P less than 0.01) in F3 follicles removed 2 h before ovulation of the F1 follicle. The FSH-stimulable AC activity of F5, F4 and F3 granulosa cells was elevated over basal (P less than 0.01). The greatest responsiveness was seen in the F5 follicle and the least in the F3 follicle. LH-stimulable AC activity was absent in the F5 follicle but present in the F4 and F3 follicles with the greater responsiveness in the F3 follicle. Isolated F5 granulosa cells secreted significant amounts of P4 in response to oFSH and tFSH. The data indicate that: 1) FSH stimulates the AC system of granulosa cells of the smaller preovulatory follicles (F5 greater than F4 greater than F3) while LH stimulates the AC system of granulosa cells of the larger follicles (F3 greater than F4), and 2) FSH promotes P4 production by granulosa cells of F5 follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The responsiveness of the hypothalamo-pituitary axis to steroid treatments for ovarian synchronization and the ovarian superstimulatory response to exogenous FSH was compared in 13-14 year old cows and their 1-4 year old young daughters. We tested the hypotheses that aging in cattle is associated with: (1) decreased follicular wave synchrony after estradiol and progesterone treatment; (2) delayed LH surge and ovulation in response to exogenous preovulatory estradiol treatment; (3) reduced superstimulatory response to exogenous FSH. Higher plasma FSH concentrations (P<0.01), and a tendency (P=0.07) for fewer 4-5 mm follicles at wave emergence were observed in old cows (n=10) than in young cows (n=9). The suppressive effect of estradiol/progesterone treatment on FSH was similar between old and young cows. Although the preovulatory LH surge in response to estradiol treatment was delayed in old than young cows (P=0.01), detected ovulation times were not different. No difference in ovarian superstimulatory response was detected between age groups, but old cows (n=8) tended (P=0.10) to have fewer large follicles (>or=9 mm) 12 h after last FSH treatment than in young cows (n=7). We concluded that pituitary and ovarian responsiveness to estradiol/progesterone synchronization treatment was similar between old and young cows, but aging was associated with a delayed preovulatory LH surge subsequent to estradiol treatment. Old cows tended to have fewer large follicles after superstimulatory treatment than young cows.  相似文献   

19.
The present experiments were conducted to evaluate the mRNA levels of luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) in granulosa layers during the ovulatory cycle of hens, in relation to the release of LH and steroid hormones. After the release of LH, progesterone (P4) and estradiol-17beta (E2), found 4-5 h before ovulation, LHR and FSHR mRNA levels were observed to decrease in the granulosa layers of the largest (F1) and second largest (F2) preovulatory follicles, with the greatest in the LHR mRNA level of F1. P4 concentrations in the granulosa layers of F1 and F2 increased 4-5 h before ovulation, with greater in F1 than in F2. F2 concentrations in the theca layers were greater in F2 than in F1 throughout the ovulatory cycle. Also, the injection of ovine LH caused decreases in the mRNA levels of LHR and FSHR in the granulosa layers. However, these decreases were abolished by the injection of aminoglutethimide, an inhibitor of steroid synthesis. These results suggest that in hen granulosa cells, the mRNA levels of not only LHR but also FSHR are down-regulated by LH and the down-regulation may be mediated steroid hormones.  相似文献   

20.
Oestrus, expected to be followed by a short luteal phase, was induced in post-partum cows by weaning their calves at 35 days after parturition. Ovaries containing the first preovulatory follicles (Type F) formed after parturition were collected 3 h after the onset of oestrus. For comparison, preovulatory follicles (Type C) were collected 3 h after the onset of oestrus in normally cycling cows. The number of granulosa cells was determined and the concentrations of receptors for follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in granulosa cells and for LH in theca cells were measured. Concentrations of oestradiol-17 beta, testosterone, androstenedione and progesterone in follicular fluid were also measured. Type F follicles contained about twice the number of granulosa cells (based on DNA) as did Type C follicles (45.8 +/- 11.3 and 24.5 +/- 3.9 micrograms DNA/follicle, respectively; P less than 0.05) but these cells had fewer receptors for LH (0.13 +/- 0.02 vs 0.29 +/- 0.03 fmol/micrograms DNA; P less than 0.01) and FSH (0.61 +/- 0.08 vs 1.3 +/- 0.29 fmol/micrograms DNA; P less than 0.08) than did those from Type C follicles. Additionally, there were fewer receptors for LH in theca tissue from Type F than from Type C follicles (28.3 +/- 5.2 vs 51.3 +/- 6.1 fmol/follicle; P less than 0.01). Concentrations of oestradiol-17 beta (475.8 +/- 85.6 vs 112.9 +/- 40.0 ng/ml; P less than 0.01) and androstenedione (214.1 +/- 48.7 vs 24.7 +/- 7.7 ng/ml; P less than 0.01) in follicular fluid were higher in Type C than in Type F follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号