首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
番茄碱对人红细胞膜Na+-K+-ATPase活性影响的研究   总被引:3,自引:1,他引:2  
以低渗法从新鲜健康人红细胞中制得膜Na^ -K^ -ATPase,研究了番茄碱(tomatine)X~人红细胞膜Na^ -K^ -ATPase活性的影响。实验结果表明,反应体系中的tomatine浓度低于1mmol/L时,对不依赖钙调蛋白(CAM)激活的Na^ -K^ -ATPase(称之为基本酶活)影响不大,浓度达1mmol/L时,该酶活性仍保持在95%左右;而在此浓度范围内,tomatine对依赖CaM的Na^ -K^ -ATPase有明显的抑制作用,其IC50值为0.16mmol/L.说明tomatine对膜酶Na^ -K^ -ATPase活性的影响可能是通过阻断CaM激活的途径而起作用,从而为进一步研究番茄碱的作用机制奠定了基础。  相似文献   

2.
Na+/H+逆向转运蛋白和植物耐盐性   总被引:17,自引:0,他引:17  
Na^ /H^ 逆向转运蛋白对植物耐盐起着重要作用,它利用质膜H^ -ATPase或液泡膜H^ -ATPase及PPiase泵H^ 产生的驱动力把Na^ 排出细胞或在液泡中区隔化以消除Na^ 的毒害。主要讨论植物中Na^ /H^ 逆向转运蛋白研究在分子水平的最新进展。  相似文献   

3.
铊是Ⅲ族元素,放射性药物铊(~(201)T1)对心肌组织有一定亲和性。近十多年,日趋广泛地应用于临床心肌灌注显影,诊断心肌疾患,效果较好。但它由细胞转运而为细胞摄取、组织浓集的机理至今未被阐明。本工作是在研究完整细胞摄取T1~+规律、机理的基础上,进一步探讨T1~+的细胞膜转运和(Na~+-K+)-ATP酶(Na泵)之间的联系,用人红细胞膜为材料,比较研究T1~+和K+激活人红细胞膜(Na~+-K+)-ATP酶的异同。  相似文献   

4.
硝普钠对铝胁迫下黑麦和小麦根尖线粒体功能的影响   总被引:4,自引:0,他引:4  
硝普钠(SNP)能够缓解铝对黑麦和小麦根伸长生长的抑制效应。铝降低黑麦和小麦的呼吸速率和P/O、OPR、R3、R4、RCR值以及线粒体膜H^+-ATP酶、H^+-PP酶、Na^+-K^+-ATP酶、Ca^2+-ATP酶、Mg^2+-ATP酶活性,而SNP则能提高铝胁迫下呼吸速率、P/O、OPR、R3、R4、RCR值和这些酶活性。说明铝胁迫导致黑麦和小麦根尖细胞线粒体呼吸功能受损,氧化磷酸化解耦联。黑麦受损程度较小麦低,具有较强耐铝能力。SNP作为一氧化氮(NO)的供体,推测NO可以有效减轻铝胁迫导致的小麦根尖线粒体呼吸功能障碍,从而能够缓解铝毒害。  相似文献   

5.
细胞死亡对调节机体内细胞的增殖和分化平衡、维持组织内环境的稳态至关重要。细胞凋亡(apoptosis)一度被认为是程序性细胞死亡的唯一形式,近期的研究结果发现程序性细胞死亡方式还包括程序性坏死(necroptosis)与细胞焦亡(pyroptosis),两者均可使细胞膜形成孔洞,破坏细胞膜,并激活强烈的炎症反应,然而两者在机制及形态上又有不同点。本文对程序性坏死与细胞焦亡的分子机制、形态学特征以及在缺血再灌注损伤、病原体感染中的作用等方面的区别做一综述。  相似文献   

6.
铊是Ⅲ族元素,放射性药物铊(~(201)TI)对心肌组织有一定亲和性。近十多年,日趋广泛地应用于临床心肌灌注显影,诊断心肌疾患,效果较好。但它由细胞转运而为细胞摄取、组织浓集的机理至今未被阐明。本工作是在研究完整细胞摄取T1~ 规律、机理的基础上,进一步探讨T1~ 的细胞膜转运和(Na~ -K~ )-ATP酶(Na泵)之间的联系,用人红细胞膜为材料,比较研究T1~ 和K~ 激活人红细胞膜(Na~ -K~ )-ATP酶的异同。一、材料和方法 (Na~ -K~ )-ATP酶是细胞膜上一横贯质膜的固有蛋白。我们用人红细胞膜作为粗制的(Na~ -K~ )-ATP酶。在适当条件下,用酶分解底物而产生的无机磷量(Pi)来衡量酶活性,比活性单位为μmolePi.mgP~(-1).hr~(-1),其中mgP是单位重量红细胞膜蛋白量。本实验用血取自同  相似文献   

7.
张娟  韩榕 《植物学通报》2009,44(4):451-456
分别采用5mJ·s^-1·mm^-2He-Ne激光辐照、10.08kJ·m·^-2,d^-1增强UV-B辐射及二者组合对小麦(Triticum aestivum)晋麦8号(Triticum aestivum‘Jinmai8’)幼苗进行处理。第5天开始测定各处理小麦幼苗叶片中线粒体、叶绿体及细胞溶质中Na^+/K^+-ATP酶活性的变化。结果表明,随着处理天数的增加,小麦幼苗叶片线粒体、叶绿体及细胞溶质中Na^+/K^+-ATP酶活性均在第6天下降,第7天升高,而后又逐渐下降。在处理的第7天,仅He—Ne激光辐照可使小麦幼苗叶片线粒体、叶绿体及细胞溶质中Na^+/K^+-ATP酶活性升高:增强UV-B辐射使各细胞器中Na^+/K^+-ATP酶活性下降:复合处理后小麦各细胞器中Na^+/K^+-ATP酶活性均高于UV-B单独辐射处理。实验结果表明,一定剂量的He-Ne激光辐照能够部分修复UV-B辐射对小麦幼苗细胞器中Na^+/K^+-ATP酶造成的损伤。  相似文献   

8.
目的:探讨地高辛抗血清对大鼠实验性心肌缺血/再灌注损伤(MI/R)的心肌氧化应激的影响。方法:采用左冠状动脉前降支结扎30min,复灌45min建立在体大鼠MI/R模型。SD大鼠随机分成假手术组、缺血/再灌注模型组、生理盐水组、维拉帕米组、小、中、大剂量地高辛抗血清组:于再灌注45min后检测左室心尖部缺血区心肌中内洋地黄素含量、心肌细胞膜Na^+,K^+-ATP酶和SOD活性以及MDA含量,光镜下观察心肌组织形态学变化。结果:MI/R组和生理盐水组大鼠心肌组织内洋地黄素水平明显升高,细胞膜Na^+,K^+-ATP酶活性明显下降,心肌组织SOD活性降低,MDA水平升高。治疗组包括维拉帕米组均能减轻心肌组织结构损伤,降低MDA水平,部分恢复SOD活性;但只有地高辛抗血清能降低心肌组织内洋地黄素水平,恢复心肌细胞膜Na^+,K^+-ATP酶活性。结论:地高辛抗血清通过拮抗内洋地黄素,恢复心肌细胞膜Na^+,K^+-ATP酶活性,从而减轻缺血/再灌注时的氧自由基损伤。  相似文献   

9.
Gao Y  Luo L  Liu H 《生理学报》2007,59(3):382-386
本研究旨在对Doucet等报道的定量检测大鼠单根近端肾小管Na^+-K^+-ATPase活性方法进行改进。取经过Ⅱ型胶原酶消化的大鼠肾脏皮质组织,在体视显微镜下手工分离单根近端肾小管,并测量其长度,经低渗和冻融处理后与[γ-^32P]ATP共同孵育,液闪法检测从[γ-^32P]ATP解离出的^32Pi,采用修正后的公式计算Na^+-K^+-ATPase活性。改良法与Doucet等的方法比较,测定单根近端肾小管Na^+-K^+-ATPase活性无显著性差异(P〉0.05)。改进后的方法节省试剂,操作简便、省时。  相似文献   

10.
硒对盐胁迫下耐盐常夏石竹生物量和渗透物质含量的影响   总被引:6,自引:0,他引:6  
培养基中加施适量外源硒能够显著提高能耐盐的常夏石竹生物量,过氧化物酶(POD)活性,K^ /Na^ 比值,K^ 、Na^ 、叶绿素和游离脯氨酸含量;降低质膜透性和可溶性糖含量;植株叶细胞质膜和液泡膜V-H^ -ATP酶的活性增加。  相似文献   

11.
Interaction of large conductance Ca(2+)- and voltage-activated K(+) (BK(Ca)) channels with Na(+)/K(+)-ATPase, caveolin-1, and cholesterol was studied in human melanoma IGR39 cells. Functional BK(Ca) channels were enriched in caveolin-rich and detergent-resistant membranes, i.e. rafts, and blocking of the channels by a specific BK(Ca) blocker paxilline reduced proliferation of the cells. Disruption of rafts by selective depletion of cholesterol released BK(Ca) channels from these domains with a consequent increase in their activity. Consistently, cholesterol enrichment of the cells increased the proportion of BK(Ca) channels in rafts and decreased their activity. Immunocytochemical analysis showed that BK(Ca) channels co-localize with Na(+)/K(+)-ATPase in a cholesterol-dependent manner, thus suggesting their co-presence in rafts. Supporting this, ouabain, a specific blocker of Na(+)/K(+)-ATPase, inhibited BK(Ca) whole-cell current markedly in control cells but not in cholesterol-depleted ones. This inhibition required the presence of external Na(+). Collectively, these data indicate that the presence of Na(+)/K(+)-ATPase in rafts is essential for efficient functioning of BK(Ca) channels, presumably because the pump maintains a low intracellular Na(+) proximal to the BK(Ca) channel. In conclusion, cholesterol could play an important role in cellular ion homeostasis and thus modulate many cellular functions and cell proliferation.  相似文献   

12.
Bacterial sepsis is frequently accompanied by increased blood concentration of lactic acid, which traditionally is attributed to poor tissue perfusion, hypoxia and anaerobic glycolysis. Therapy aimed at improving oxygen delivery to tissues often does not correct the hyperlactatemia, suggesting that high blood lactate in sepsis is not due to hypoxia. Various tissues, including skeletal muscle, demonstrate increased lactate production under well-oxygenated conditions when the activity of the Na+-K+ ATPase is stimulated. Although both muscle Na+-K+ ATPase activity and muscle plasma membrane content of Na+, K+-ATPase subunits are increased in sepsis, no studies in vivo have demonstrated correlation between lactate production and changes in intracellular Na+ and K+ resulting from increased Na+-K+ pump activity in sepsis. Plasma concentrations of lactate and epinephrine, a known stimulator of the Na+-K+ pump, were increased in rats made septic by E. coli injection. Muscle lactate content was significantly increased in septic rats, although muscle ATP and phosphocreatine remained normal, suggesting oxygen delivery remained adequate for mitochondrial energy metabolism. In septic rats, muscle intracellular ratio of Na+:K+ was significantly reduced, indicating increased Na+-K+ pump activity. These data thus demonstrate that increased muscle lactate during sepsis correlates with evidence of elevated muscle Na+-K+ ATPase activity, but not with evidence of impaired oxidative metabolism. This study also further supports a role for epinephrine in this process.  相似文献   

13.
Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes.  相似文献   

14.
The movement of intracellular monovalent cations has previously been shown to play a critical role in events leading to the characteristics associated with apoptosis. A loss of intracellular potassium and sodium occurs during apoptotic cell shrinkage establishing an intracellular environment favorable for nuclease activity and caspase activation. We have now investigated the potential movement of monovalent ions in Jurkat cells that occur prior to cell shrinkage following the induction of apoptosis. A rapid increase in intracellular sodium occurs early after apoptotic stimuli suggesting that the normal negative plasma membrane potential may change during cell death. We report here that diverse apoptotic stimuli caused a rapid cellular depolarization of Jurkat T-cells that occurs prior to and after cell shrinkage. In addition to the early increase in intracellular Na(+), (86)Rb(+) studies reveal a rapid inhibition of K(+) uptake in response to anti-Fas. These effects on Na(+) and K(+) ions were accounted for by the inactivation of the Na(+)/K(+)-ATPase protein and its activity. Furthermore, ouabain, a cardiac glycoside inhibitor of the Na(+)/K(+)-ATPase, potentiated anti-Fas-induced apoptosis. Finally, activation of an anti-apoptotic signal, i.e. protein kinase C, prevented both cellular depolarization in response to anti-Fas and all downstream characteristics associated with apoptosis. Thus cellular depolarization is an important early event in anti-Fas-induced apoptosis, and the inability of cells to repolarize via inhibition of the Na(+)/K(+)-ATPase is a likely regulatory component of the death process.  相似文献   

15.
Electrogenic sodium pump (Na(+)-K(+)-ATPase) maintains intracellular ionic concentration and controls membrane potential, Therefore, we analyzed the modulation of Na(+)-K(+)-ATPase activity by the endothelium, cyclic AMP-protein kinase A (cAMP-PKA), protein kinase C (PKC) and nitric oxide-cyclic GMP-protein kinase G (NO-cGMP-PKG) in isolated rat thoracic aortas. The potassium-induced relaxation in arteries incubated in K(+)-free solution was used as a functional indicator of Na(+)-K(+)-ATPase activity for ounbain abolished the potassium-induced relaxation in rat aortas. Potasslium-induced relaxations after removal of the endothelium were moderately blunted in these preparations. In the presence of N(omega)-nitro-L-arginine methyl ester, but not indomethacin, the potassium-induced relaxation was also inhibited. Similar inhibitions of potassium-induced relaxations were observed in aortas treated with 8-bromo-cAMP and phorbol 12-myristate 13-acetate (PMA). Although inhibitors of PKA and PKC individually did not affect the potassium-induced relaxation, the combination of both inhibitors significantly potentiated that relaxation. In contrast to 8-bromo, cAMP and PMA, 8-bromo-cGMP enhanced the potassium-induced relaxation whereas 1H-[1,2,4}oxadiazolo[4,3-a]quinoxalin-1-one attenuated that relaxation. These results suggested that endothelium is a functional stimulator of the Na(+)-K(+)-ATPase activity. In addition, cAMP-PKA and PKC pathways inhibited the sodium pump while the NO-cGMP pathway stimulated this pump in the vascular bed.  相似文献   

16.
17.
To investigate whether nongastric H+-K+-ATPases transport Na+ in exchange for K+ and whether different beta-isoforms influence their transport properties, we compared the functional properties of the catalytic subunit of human nongastric H+-K+-ATPase, ATP1al1 (AL1), and of the Na+-K+-ATPase alpha1-subunit (alpha1) expressed in Xenopus oocytes, with different beta-subunits. Our results show that betaHK and beta1-NK can produce functional AL1/beta complexes at the oocyte cell surface that, in contrast to alpha1/beta1 NK and alpha1/betaHK complexes, exhibit a similar apparent K+ affinity. Similar to Na+-K+-ATPase, AL1/beta complexes are able to decrease intracellular Na+ concentrations in Na+-loaded oocytes, and their K+ transport depends on intra- and extracellular Na+ concentrations. Finally, controlled trypsinolysis reveals that beta-isoforms influence the protease sensitivity of AL1 and alpha1 and that AL1/beta complexes, similar to the Na+-K+-ATPase, can undergo distinct K+-Na+- and ouabain-dependent conformational changes. These results provide new evidence that the human nongastric H+-K+-ATPase interacts with and transports Na+ in exchange for K+ and that beta-isoforms have a distinct effect on the overall structural integrity of AL1 but influence its transport properties less than those of the Na+-K+-ATPase alpha-subunit.  相似文献   

18.
The present study reports a discrepancy between the effects of vanadate on the membrane Na+-K+-ATPase and the Na+/K+ pump of the skeletal muscle. Vanadate in concentration 4 X 10(-6) mol/l which is necessary to block the enzyme Na+-K+-ATPase activity of membrane fractions failed to inhibit the electrogenic Na+/K+ pump of intact muscle cells. The effect of vanadate on the electrophysiological parameters of the muscle fibre membrane required much higher vanadate levels, but again, Na+/K+ pump was still active. Vanadate in concentrations 4 X 10(-4) and 4 X 10(-5) mol/l depolarized the membrane potential and decreased the membrane resistance [apparently in consequence of enhanced passive membrane permeability for Na+ ions]. Action potentials and the electrical excitability of the muscle fibre membrane were reduced by these vanadate concentrations.  相似文献   

19.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

20.
The Na+-K+--ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, Na+-K+--ATPase is engaged in assembly of multiple protein complexes that transmit signals to different intracellular compartments. The signaling function of the enzyme appears to have been acquired through the evolutionary incorporation of many specific binding motifs that interact with proteins and ligands. In some cell types the signaling Na+ --ATPase and its protein partners are compartmentalized in coated pits (i.e., caveolae) the plasma membrane. Binding of ouabain to the signaling Na+-K+--ATPase activates the cytoplasmic tyrosine kinase Src, resulting in the formation of an active "binary receptor" that phosphorylates and assembles other proteins into different signaling modules. This in turn activates multiple protein kinase cascades including mitogen-activated protein kinases and protein kinase C isozymes in a cell-specific manner. It also increases mitochondrial production of reactive oxygen species (ROS)and regulates intracellular calcium concentration. Crosstalk among the activated pathways eventually results in changes in the expression of a number of genes. Although ouabain stimulates hypertrophic growth in cardiac myocytes and proliferation in smooth muscle cells, it also induces apoptosis in many malignant cells. Finally, the signaling function of the enzyme is also pivotal to ouabain-induced nongenomic effects on cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号