首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Thailand border market is where the local Thais, Cambodians, Laotians, and Burmeses exchange their goods and culture at the border checkpoints. It is considered to be the source of aerial disease transmission especially for foreigners because it is always very crowded with people from all walks of life. Unhealthy air quality makes this area high risk of spread of airborne diseases. This study assessed airborne concentrations of bacteria and fungi in a border market to improve exposure estimates and develop efficient control strategies to reduce health risk. The density and distribution of airborne bacteria and fungi were investigated in the Chong Chom border market in Surin Province, Thailand. Eighteen air sampling sites were taken from outdoors and various work environments including indoor footpaths, wooden handicraft shops, electronic shops, the secondhand clothing shops, and fruit market areas. Exposed Petri plate method and liquid impinger sampler were used for sampling at the breathing zone, 1.5 m above the floor level, during weekend and holiday. Meteorological factors such as relative humidity, temperature, and light intensity were collected by portable data logger. The relative humidity was 67–73%, and temperature 29–33°C, and light varied between 18 and 270 Lux m−2. Gram-positive and Gram-negative bacteria were found at a mean value of 104 CFU m−3, and airborne fungi of 103 CFU m−3 were recorded. The highest concentration of culturable airborne microorganisms was found along the indoor footpath (9.62 × 104 CFU m−3 and 750.00 CFU/plate/h for impingement and sedimentation methods, respectively), the fruit market area (7.86 × 104 CFU m−3 and 592.42 CFU/plate/h for impingement and sedimentation methods, respectively), and the secondhand clothing shop (4.59 × 103 CFU m−3 and 335.42 CFU/plate/h for impingement and sedimentation methods, respectively) for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The lowest concentration of Gram-positive bacteria, Gram-negative bacteria, and fungi was found only at the outdoor area at 1.53 × 104 CFU m−3, 0.93 × 104 CFU m−3 and 0.80 × 103 CFU m−3 by means of impingement method and 136.67 CFU/plate/h, 69.25 CFU/plate/h, and 62.00 CFU/plate/h by means of sedimentation methods for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The most frequently present airborne bacteria were identified as Bacillus, Corynebacteria, Diplococcus, Micrococcus, Acinetobacter, Alcaligenes, Enterobacter, and spore former rods. Acremonium, Aspergillus, Cladosporium, Penicillium, and Sporotrichum were the most frequently found aerosol fungi genera. The distribution of airborne microorganisms correlated with relative humidity and light factors based on principal component analysis. In conclusion, the border market is a potential source of aerial disease transmission and a various hazards of bioaerosols for workers, consumers, sellers, and tourists. The bioaerosol concentration exceeded the standard of occupational exposure limit. Many major indicators of allergenic and toxigenic airborne bacteria and fungi, Acinetobacter, Enterobacter, Pseudomonas, Cladosporium, Alternaria, Aspergillus, and Penicillium, were found in the various market environments.  相似文献   

2.
Almost all of the investigated samples of the Arctic and Antarctic permafrost sediments of different genesis with ages from 5–10 thousand to 2–3 million years were found to contain viable micromycete and bacterial cells. The maximum amounts of viable cells of fungi (up to 104CFU/g air-dried sample) and bacteria (up to 107–109CFU/g air-dried sample) were present in fine peaty sediment samples taken from different depths. The identified micromycetes belonged to more than 20 genera of the divisions Basidiomycota, Ascomycota, and Zygomycota, and some represented mitosporic fungi. Thawing the samples at 35 and 52°C allowed the number of detected fungal genera to be increased by more than 30%. Aerobic heterotrophic prokaryotes were dominated by coryneform, nocardioform, and spore-forming microorganisms of the order Actinomycetales.Analysis of the isolated fungi and actinomycetes showed that most of them originated from the microbial communities of ancient terrestrial biocenoses.  相似文献   

3.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

4.
Sampling was conducted from June 2007 to May 2008 in an enclosed rabbit house to investigate composition and variability of airborne fungi. Samples were collected using an Andersen-6 sampler, with Sabouraud culture medium as sampling medium. The results showed that monthly mean concentration was 2.79–5.46 × 103 colony forming unit/m3 air (CFU/m3 air), with the maximum level in October, and the minimum level in January. Within a day, the maximum level occurred at 09:00, followed by 17:00 and then 13:00. A total of 6,523 fungal colonies, belonging to 17 genera and 36 species, were obtained. The predominant genera included Cladosporium, Penicillium, Aspergillus and Altemaria, comprising 71.45% of the colony count. The obtained fungi of the year were mainly centralized in the stage D of the sampler (2.0–3.0 μm), accounting for 37.8% of the colonies. The minimum value occurred at stage F (<0.65 μm), accounting for 1.10% of the colonies.  相似文献   

5.
Contribution of leaf surface fungi to the air spora   总被引:1,自引:0,他引:1  
High concentrations of airborne fungal spores frequently occur from spring through fall in temperate areas of the world. Although it is generally assumed that fungi on leaf surfaces are contributors to the air spora, little data are available comparing the types of fungi found on leaf surfaces with those in the atmosphere. Air sampling was carried out with a Burkard Spore Trap located on the roof of a building on the University of Tulsa campus using standard methods. Leaf samples were aseptically collected from Ulmus americana and Quercus palustris trees on campus, placed in sterile plastic bags, and brought to the lab. For each leaf, 4 cm2 areas of both upper and lower leaf surfaces were swabbed and plated on malt extract agar with streptomycin. Cultures were incubated at room temperature for 5–7 days and then examined microscopically. Results were expressed as colony forming units (CFU)/cm2. Twenty-one fungal taxa were identified from the air samples. The most abundant taxa were Cladosporium, ascospores, basidiospores, and Alternaria; together these four spore types comprised over 90% of the yearly total. Yeasts were the most abundant fungi isolated from both leaf types. Among the mycelial fungi were Phoma species, followed by Cladosporium and Alternaria. Overall twenty genera of filamentous fungi were identified. Yeasts and Phoma are normally splash dispersed and were not identified in the Burkard air samples. However, 10 taxa isolated from leaf surfaces were registered in air samples. Crude estimates of the leaf surface area of each tree suggest that the total fungal load was approximately 5.04×108 CFU for Ulmus and 2.71×108 CFU for Quercus. Of these levels, 19% were from fungi also detected in air samples. The data suggest that some leaf-surface fungi are major contributors to the air spora.  相似文献   

6.
Fungal agents are responsible for a variety of respiratory diseases both in humans and animals. The nature and seasonal variations of fungi have been investigated in many environments with wide ranging results. The aims of the present report were (i) to evaluate the quality and magnitude of exposure to airborne fungi in three differently structured equine stalls (open air, partially and completely enclosed buildings) during a one-year period, using an air sampling technique and (ii) to compare the distribution and frequency of fungal species, with regards to these different environments. Air samples were collected monthly from December 2001 to November 2002 by means of a surface air sampler (SAS) Super-90, (PBI International, Milan, Italy). Penicillium and Aspergillus spp. were cultured from all the stables in all seasons. Mucoraceae were also recovered in all seasons in stalls 1 and 2, while they were not isolated in spring and fall in stall 3. These fungi were detected in 28.4%, 72.9% and 60.5% of the total number of samples, respectively. Other fungal genera such as Alternaria, Cladosporium, Fusarium, Beauveria and Drechslera were also occasionally recovered.Viable fungal concentrations varied greatly, ranging from below the limit of detection to more than 3000 CFU/m3 for stables 1 and 2, and 1750 CFU/m3 for stable 3. The median fungal concentration was approximately 178 CFU/m3. Total fungal concentration appeared to be highest in summer, winter and spring, and lowest in the fall.  相似文献   

7.
A study of airborne fungi was carried out in the architectural complex of the Cathedral of Santiago de Compostela (Spain) during 2002, by using viable volumetric sampling methods. This resulted in a total of 35 identified taxa, of which the most abundant were: Alternaria, Aspergillus, Cladosporium and Penicillium. Sampling was completed with data from the outdoor atmosphere and swab samples in specific places.In general there were no statistically significant indoor/outdoor differences and in both cases the highest CFU m-3 were obtained during the spring-summer. Similar relatively low numbers of the same fungi were likewise detected at different points in the Cathedral nave, while up to nearly 6500 CFU m-3 were recorded in the Corticela Chapel. The study of intradiurnal levels carried out in the Cathedral nave reveals greater abundance of fungal concentrations at 13:00 h, the moment of massive influx of visitors in the Cathedral, with 406 CFU m-3 compared to the 380 CFU m-3 sampled at 9:00 h and the 350 CFU m-3 at 21:00 h. The whole investigation is the first study of the atmospheric fungal content of the Cathedral of Santiago de Compostela.  相似文献   

8.
Inhalation of airborne microorganisms and organic dust is an occupational concern among workers in agricultural industries. Airborne microorganisms and particulate matter samples were collected from poultry house, flourmill, textile, and food industry sites by use of liquid impinger and gravimetric samplers. Particulate matter concentrations were recorded at median concentrations of 1.56, 1.92, 4.39, and 0.7 mg/m3 in the occupied poultry house, textile, flourmill, and food indoor working environments, respectively. The highest median particulate matter concentration (27.9 mg/m3) was detected at the flourmill’s stack site. The highest median indoor concentration of culturable airborne bacteria (6.23 × 105 CFU/m3) was found at the occupied poultry-house site and the lowest concentration (4.6 × 103 CFU/m3) was found at the food industry site. The highest median indoor concentration of culturable airborne fungi (3.15 × 104 CFU/m3) was found at the flourmill site whereas the lowest (1.24 × 103 CFU/m3) was found at the textile industry site. Bacillus and Staphylococcus were the predominant Gram-positive bacteria whereas Acinetobacter and Klebsiella were the predominant Gram-negative bacteria. Escherichia coli and Salmonella were only detected in the indoor air at the poultry house site. Aspergillus flavus, Aspergillus niger, Penicillium, and yeast were the predominant fungal types at flourmill, textile, food industry, and poultry house, respectively. Workers were continuously exposed to airborne microorganisms at a median value of 104 CFU/m3 in all the industries studied.  相似文献   

9.
Many working environments are predisposed for larger than average amounts of fungi and other microorganisms often due to organic material being handled. From 2003 to 2007, the area used for strawberry production in Denmark increased by 62%. The purpose of this study was to determine the levels of exposure to microorganisms, endotoxin, (1→3)-β-d-glucan (β-glucan), and pollen in a field of strawberries. The study was carried out in eastern Denmark from the middle of June to the beginning of August 2008. The strawberries were grown organically, and microbiological pest control agents (MPCAs) were applied during this and former growth seasons. In order to measure exposure to inhalable bioaerosol components, we used stationary filter samplers. Bioaerosol sampling was performed during 4 working days, and a total of 57 samplings were performed. The filters were analysed for contents of fungi, MPCAs, endotoxin, β-glucan, and pollen. The mean exposure was 6,154 CFU Cladosporium sp. m−3, 1.0 × 105 fungal spores m−3, 4.1 × 104 hyphal fragments m−3, 5.8 × 103 pollen m−3, 57.3 ng β-glucan m−3, and 8.9 endotoxin units (EU) m−3. A significant and positive correlation was found between β-glucan and fungal spores and between CFU of Cladosporium sp. and CFU of fungi. We selected specifically for Metarhizium anisopliae, Beauveria bassiana, and the applied MPCAs Trichoderma harzianum, T. polysporum, and Bacillus thuringiensis but found none of these species. In conclusion, our study shows that berry pickers in this organic strawberry field were potentially subjected to higher levels of fungal spores, Cladosporium sp., hyphal fragments, pollen, and thus also β-glucan than is usually seen in outdoor air. Exposure to MPCAs was not seen. The exposure to endotoxin was only slightly higher than e.g. in a town.  相似文献   

10.
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.  相似文献   

11.

We surveyed the diversity of cultivable fungi isolated from cold and hot volcanic soils of Deception Island, Antarctica. Seventy-four fungal isolates were identified; these belonged to 17 taxa in the genera Aspergillus, Penicillium, Pseudogymnoascus, Purpureocillium, and Mortierella. The fungal assemblages showed low diversity, richness, and dominance indices. The Aspergillus taxa were dominant in the soils at 0 °C, 50 °C, and 100 °C. Aspergillus lacticoffeatus, Aspergillus cf. ruber, Penicillium citrinun, and Purpureocillium sodanum were present only in soils having a temperature of 100 °C. Aspergillus calidoustus was present in all thermal soils and displayed the highest densities. The majority of fungi displayed mesophilic behavior; however, different isolates of Aspergillus lacticoffeatus and Aspergillus niger were able to grow at 50 °C; these are phylogenetically close to the causative agents of aspergillosis in immunocompromised individuals. Deception Island perhaps represents one of the most visited regions in Antarctica and the tourism there has increased over the last 20 years, especially by elderly tourists, probably with weak immune systems, come in contact with the resident microorganisms, including the thermo-resistant opportunistic Aspergillus species.

  相似文献   

12.
A quantitative and qualitative survey was carried out for airborne fungus spores coming into contact with horizontally and vertically gravitation sampling oriented surfaces in the atmosphere of Giza city. Czapek Dox agar, malt extract agar, potato dextrose agar and Sabouraud dextrose agar Petri dishes were exposed monthly to the five oriented surfaces of a polystyrene cube, throughout a one-year period. Significant differences (P < 0.01) were observed between the total counts of caught airborne fungi contacting with the horizontal compared to other vertically oriented surfaces. Conversely, there were no significant differences observed between the total catch of airborne fungi using the various sampling media. The results revealed that vertical sampling provides valuable information that may be lost from horizontal sampling alone. A total of 5,053 colonies belonging to 40 fungal organisms were identified. Alternaria (24.26%), Aspergillus (19.2%), Cladosporium (14.5%) and Penicillium (11.43%) were the most predominant fungal genera. Collected fungi were grouped into high, medium, low and rare components depending upon their frequency in the studied atmosphere. Aspergillus niger, Aspergillus parasiticus, Alternaria, Cladosporium and Penicillium were regularly found on all oriented surfaces. However, Arthrobotrys, Biospora, Chaetomium, Pleospora, Trichothecium and Verticillium were rarely found in the air. Positive and/or negative correlations were observed between the total fungal counts and the predominant fungal types with meteorological parameters during sampling days.  相似文献   

13.
Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4?μm polycarbonate membrane filter using the MiniVol sampler at 5?l/min for 20?h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873?CFU/m3 and 160–1,897?CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000?microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39?EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.  相似文献   

14.
The objective of this study was to investigate the airborne viable spore concentrations and identify the fungal species in all indoor spaces from the lending library at the Technical University “Gheorghe Asachi” Iaşi, Romania. Samples were collected using the settle plate method and swab samples from PC cooler fan grids as well as from the wall in it’s vicinity and from paper/wood fragments. There were no air conditioning systems in the library rooms. The heating systems were standard with an environmental temperature of 20°C in winter, except for the storage area of old/rare books stacks II, where the temperature was below 15°C and the humidity was very high due to water infiltrations in the walls and poor maintenance. More than 296 fungal colonies from over 78 samples were identified, enumerated, and reported. Indoor airborne fungal spore deposition rates were within the range of 419–1,677 CFU/m2, with the predominance of genera being Aspergillus spp., Penicillium spp., Cladosporium spp., Alternaria spp. and Chaetomium spp. Approximately ten fungal colonies could not be identified. The PC fans move particles from the low levels (floor) to the air, and are thus responsible for maintaining a constant air velocity and contribute to fungal-spore aerosolization, transport, deposition and resuspension. Book paper and wood furniture are known to be suitable substrates for cellulose degrading fungi.  相似文献   

15.
Understanding the structure of indoor airborne microbial communities could be useful in optimizing conservation and disinfection procedures in archive repositories, preventing the biodeterioration of stored collections. In this study we characterized the microbial air community inside the Archive of the University of Coimbra, by identifying different fungal and bacterial organisms retrieved from air samples. The microbial contamination was determined using conventional culture methods, and the isolates were typified using morphological techniques. Results indicated a low microbial air contamination (107 ± 12 CFU/m3), particularly regarding fungal propagules (6 ± 1 CFU/m3). Fungal isolates were identified using ITS-DNA sequencing. Among fungal isolates, Penicillium was the most frequent genus, and Penicillium griseofulvum was the predominant species. Simpson diversity index (1-D) was applied to phenotypic and genotypic results. Total phenotypic diversity varied from 0.4 to 0.8 and regarding fungal species, the diversity was higher than 0.5. These results were compared with previous analyses of the Archive's air, suggesting that short-term changes in atmospheric conditions may influence the indoor air microbial community structure.  相似文献   

16.
Fungal spores are an important component of library air   总被引:4,自引:0,他引:4  
The airborne fungal spore types were studied in different libraries in Delhi, using an Andersen sampler and a Burkard personal sampler, for culturable and non-culturable fungi respectively. The concentration inside the libraries, before and after the agitation of books, were compared with outside air. The major contributors to the library air areCladosporium, aspergilli/penicillia, smuts andAlternaria, varying from 50 to 14%. Some fungi (Cladosporium, Alternaria, smut,Penicillium chrysogenum andnigricans) showed seasonal occurrence, corresponding to their occurrence in the extramural environment. Aspergilli/penicillia,Drechslera, Curvularia andAspergillus flavus had a significantly higher concentration (P<0.01) inside the library, and recorded a significant increase in concentration after agitation of books. Air-conditioned libraries have low fungal spore concentrations, as compared to naturally ventilated libraries.  相似文献   

17.
The results of 100 carpet dust analyses from atopic individuals' environment were compared according to the sampling period or the location. Dust samples were collected with a standard domestic vacuum cleaner, in locations with carpeted floor: in residences (living-room and/or bedroom), in school classrooms and in offices. The quantities of fungi vary from 5000 CFU/g to 66 000 000 CFU/g of dust. More than 100 species were isolated by dilution plating. The main species found in carpet dust wereEurotium repens, Penicillium chrysogenum, Alternaria alternata, Aureobasidium pullulans andPhoma herbarum. Strict xerophilic species were rather rare and detected in small quantities. Differences in the distribution of the CFU concentrations were examined for the four different sampling locations and were statistically significant (P=0.0174). In this study, schools were open spaces, and offices, mostly with air conditioning systems, were locations in which air is not confined. This, added to frequent professional carpet cleaning, probably explains the lowest levels of fungal concentration found in these locations. The majority of the homes had the largest fungal concentration in the living-room (median: 2×105 CFU/g) while some bedrooms (median: 7×104 CFU/g) had the highest concentrations. It is suggested that, when fungi are suspected to be the origin of respiratory allergy or irritating symptoms, the mycoflora of the bedroom, principally, should be investigated first.  相似文献   

18.
19.
Lin  Wan-Rou  Ho  Yung-Hung  Lee  Wai Kwan  Cheng  Hsuan-Min  Wang  Pi-Han 《Aerobiologia》2022,38(1):13-21

Heating, ventilation and air conditioning (HVAC) systems are widely used to regulate indoor temperature and air quality of modern buildings. The central supply and exhaust system cause the dispersal and removal of bioaerosols. This study presents results from ex situ experiments conducted to a better understanding of the spatiotemporal distribution, passive dispersal and removal of fungal spores through HVAC systems. The study was conducted in a 50 square meters by 3 m high instrument room in a research building with HVAC systems. Plates with Aspergillus flavus colony were attached upside down on the edge of the ceiling vent to imitate the mildew growing. Fungal spores were released for 10 min, collected and counted by the settle plate method in 2 h. Results show that A. flavus spores dispersed to 3.6 m in 2 min and were evenly distributed in the room within 8 min. The concentration of spores decreased from 48 to 3–6 CFU/plate after 60 min and was lower than 1% after 120 min. Our results suggest that airborne fungal spores disperse and remove by HVAC systems efficiently. Without the external and internal source, the HVAC system could greatly reduce the fungal amount in the indoor air to the background level within one hour. This study provided the observed data of the transmission and retention of internal or external biological contaminants through HVAC system.

  相似文献   

20.
This paper is a speleomycological report from a former aluminous shale mine in Janowiec, Poland. Fungi were identified morphologically and molecularly. Microclimatic conditions differed significantly between locations of the study. However, the external environment around the mine did not directly increase the community composition and concentration of fungi in the mine. The density of fungi isolated from the air outside the mine was 63.1 colony forming units (CFU) per 1 cm3 of air. Inside the mine, fungal density ranged from 287.5 to 655 CFU per 1 m3 from the air, 28.4 to 131.1 CFU per 1 cm2 from the rock surfaces and 288.1 to 335.1 CFU per 1 cm3 from the water. Pearson correlation analysis showed that the levels of fungi isolated from the air were correlated positively with temperature, relative humidity and CO2 concentration. The concentration of fungi isolated from the rock surfaces showed a positive correlation with air flow. Five species of filamentous fungi were isolated from the sampled external air, 10 species from the internal air, six species from the rock surface and 11 species from the water. The fungi most frequently isolated from the air and water of the mine belonged to Penicillium spp., whereas from the rock surface, Geomyces pannorum was most frequently isolated. Some of the fungi present in the mine can be psychrotolerant and pathogenic for humans and animals, and they can also cause degradation of rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号