首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Secretory proteins are translocated across the endoplasmic reticulum (ER) membrane through a channel formed by three proteins, namely Sec61p, Sbh1p, and Sss1p (Johnson, A. E., and van Waes, M. A. (1999) Annu. Rev. Cell Dev. Biol. 15, 799-842). Sec61p and Sss1p are essential for translocation (Esnault, Y., Blondel, M. O., Deshaies, R. J., Schekman, R., and Kepes, F. (1993) EMBO J. 12, 4083-4093). Sec61p is a polytopic membrane protein that lines the protein translocation channel. The role of Sss1p is unknown. During import into the ER through the Sec61p channel, many proteins are N-glycosylated before translocation is completed. In addition, both the Sec61 channel and oligosaccharyl transferase (OST) copurify with ribosomes from rough ER, suggesting that OST is located in close proximity to the Sec61 channel (Gorlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., and Rapoport, T. A. (1992) Cell 71, 489-503 and Wang, L., and Dobberstein, B. (1999) FEBS Lett. 457, 316-322). Here, we demonstrate a direct interaction between Sss1p and a subunit of OST, Wbp1p, using the split-ubiquitin system and co-immunoprecipitation. We generated mutants in the cytoplasmic domain of Sss1p that disturb the interaction with OST and are viable but display a translocation defect specific for proteins with glycosylation acceptor sites. Our data suggest that Sss1p coordinates translocation across the ER membrane and N-linked glycosylation of secretory proteins.  相似文献   

2.
Protein translocation across the endoplasmic reticulum membrane occurs at the Sec61 translocon. This has two essential subunits, the channel-forming multispanning membrane protein Sec61p/Sec61α and the tail-anchored Sss1p/Sec61γ, which has been proposed to “clamp” the channel. We have analyzed the function of Sss1p using a series of domain mutants and found that both the cytosolic and transmembrane clamp domains of Sss1p are essential for protein translocation. Our data reveal that the cytosolic domain is required for Sec61p interaction but that the transmembrane clamp domain is required to complete activation of the translocon after precursor targeting to Sec61p.  相似文献   

3.
T Biederer  C Volkwein    T Sommer 《The EMBO journal》1996,15(9):2069-2076
We have investigated the degradation of subunits of the trimeric Sec61p complex, a key component of the protein translocation apparatus of the ER membrane. A mutant form of Sec6lp and one of the two associated proteins (Sss1p) are selectively degraded, while the third constituent of the complex (Sbh1p) is stable. Our results demonstrate that the proteolysis of the multispanning membrane protein Sec61p is mediated by the ubiquitin-proteasome pathway, since it requires polyubiquitination, the presence of a membrane-bound (Ubc6) and a soluble (Ubc7) ubiquitin-conjugating enzyme and a functional proteasome. The process is proposed to be specific for unassembled Sec61p and Sss1p. Thus, our results suggest that one pathway of ER degradation of abnormal or unassembled membrane proteins is initiated at the cytoplasmic side of the ER.  相似文献   

4.
Sss1p, an essential component of the heterotrimeric Sec61 complex in the ER (endoplasmic reticulum), is a tail-anchored protein whose precise mechanism of action is largely unknown. Tail-anchored proteins are involved in many cellular processes and are characterized by a single transmembrane sequence at or near the C-terminus. The Sec61 complex is the molecular machine through which secretory and membrane proteins translocate into and across the ER membrane. To understand the function of the tail anchor of Sss1p, we introduced mutations into the tail-anchor sequence and analysed the resulting yeast phenotypes. Point mutations in the C-terminal hydrophobic core of the tail anchor of Sss1p were identified that allowed Sss1p assembly into Sec61 complexes, but resulted in diminished growth, defects in co- and post-translational translocation, inefficient ribosome binding to Sec61 complexes, reduction in the stability of both heterotrimeric Sec61 and heptameric Sec complexes and a complete breakdown of ER structure. The underlying defect caused by the mutations involves loss of a stabilizing function of the Sss1p tail-anchor sequence for both the heterotrimeric Sec61 and the heptameric Sec complexes. These results indicate that by stabilizing multiprotein membrane complexes, the hydrophobic core of a tail-anchor sequence can be more than a simple membrane anchor.  相似文献   

5.
Protein translocation into the endoplasmic reticulum occurs at pore-forming structures known as translocons. In yeast, two different targeting pathways converge at a translocation pore formed by the Sec61 complex. The signal recognition particle-dependent pathway targets nascent precursors co-translationally, whereas the Sec62p-dependent pathway targets polypeptides post-translationally. In addition to the Sec61 complex, both pathways also require Sec63p, an integral membrane protein of the Hsp40 family, and Kar2p, a soluble Hsp70 located in the ER lumen. Using a series of mutant alleles, we demonstrate that a conserved Brl (Brr2-like) domain in the COOH-terminal cytosolic region of Sec63p is essential for function both in vivo and in vitro. We further demonstrate that this domain is required for assembly of two oligomeric complexes of 350 and 380 kDa, respectively. The larger of these corresponds to the heptameric "SEC complex" required for post-translational translocation. However, the 350-kDa complex represents a newly defined hexameric SEC' complex comprising Sec61p, Sss1p, Sbh1p, Sec63p, Sec71p, and Sec72p. Our data indicate that the SEC' complex is required for co-translational protein translocation across the yeast ER membrane.  相似文献   

6.
Following initiation of translocation across the membrane of the endoplasmic reticulum via the translocon, polypeptide chains are N-glycosylated by the oligosaccharyl transferase (OT) enzyme complex. Translocation and N-glycosylation are concurrent events and would be expected to require juxtaposition of the translocon and the OT complex. To determine whether any of the subunits of the OT complex and translocon mediate interactions between the two complexes, we initiated a systematic study in budding yeast using the split-ubiquitin approach. Interestingly, the OT subunit Stt3p was found to interact only with Sec61p, whereas another OT subunit, Ost4p, was found to interact with all three components of the translocon, Sec61p, Sbh1p, and Sss1p. The OT subunit Wbp1p was found to interact very strongly with Sec61p and Sbh1p and weakly with Sss1p. Other OT subunits, Ost1p, Ost2p, and Swp1p were found to interact with Sec61p and either Sbh1p or Sss1p. Ost3p exhibited a weak interaction with Sec61p and Sbh1p, whereas Ost5p and Ost6p interacted very weakly with Sec61p and failed to interact with Sbh1p or Sss1p. We were able to confirm these split-ubiquitin findings by a chemical cross-linking technique. Based on our findings using these two techniques, we conclude that the association of these two complexes is stabilized via multiple protein-protein contacts. Based on extrapolation of the structural parameters of the crystal structure of the prokaryotic Sec complex to the eukaryotic complex, we propose a working model to understand the organization of the translocon-OT supercomplex.  相似文献   

7.
The heterotrimeric Sec61p complex is a key component of the protein translocation apparatus of the endoplasmic reticulum membrane. The complex characterized from yeast includes Sec61p, a 10-transmembrane-domain membrane protein which has a direct interaction with Sss1p, a small C-terminal anchor protein. In order to gain some insight into the architecture of this complex we have functionally expressed Sec61p as complementary N- and C-terminal fragments. Chemical crosslinking of Sss1p to specific Sec61p fragments in these functional combinations and suppression of sec61 mutants by over-expression of Sss1p have led to identification of the region which includes transmembrane domains TM6, TM7 and TM8 (amino acid residues L232-R406) of Sec61p as a major site of interaction with Sss1p.  相似文献   

8.
Yeast microsomes contain a heptameric Sec complex involved in post-translational protein transport that is composed of a heterotrimeric Sec61p complex and a tetrameric Sec62-Sec63 complex. The trimeric Sec61p complex also exists as a separate entity that probably functions in co-translational protein transport, like its homolog in mammals. We have now discovered in the yeast endoplasmic reticulum membrane a second, structurally related trimeric complex, named Ssh1p complex. It consists of Ssh1p1 (Sec sixty-one homolog 1), a rather distant relative of Sec61p, of Sbh2p, a homolog of the Sbh1p subunit of the Sec61p complex, and of Sss1p, a component common to both trimeric complexes. In contrast to Sec61p, Ssh1p is not essential for cell viability but it is required for normal growth rates. Sbh1p and Sbh2p individually are also not essential, but cells lacking both proteins are impaired in their growth at elevated temperatures and accumulate precursors of secretory proteins; microsomes isolated from these cells also exhibit a reduced rate of post-translational protein transport. Like the Sec61p complex, the Ssh1p complex interacts with membrane-bound ribosomes, but it does not associate with the Sec62-Sec63p complex to form a heptameric Sec complex. We therefore propose that it functions exclusively in the co-translational pathway of protein transport.  相似文献   

9.
Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the Sec61 complex, a heterotrimeric protein complex possessing two essential sub-units, Sec61p/Sec61α and Sss1p/Sec61γ and the non-essential Sbh1p/Sec61β subunit. In addition to forming a protein conducting channel, the Sec61 complex maintains the ER permeability barrier, preventing flow of molecules and ions. Loss of Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C-terminus is juxtaposed to the key gating module of Sec61p/Sec61α and is important for gating the translocon. Inspection of the cancer genome database identifies six mutations in highly conserved amino acids of Sec61γ/Sss1p. We identify that five out of the six mutations identified affect gating of the ER translocon, albeit with varying strength. Together, we find that mutations in Sec61γ that arise in malignant cells result in altered translocon gating dynamics, this offers the potential for the translocon to represent a target in co-therapy for cancer treatment.  相似文献   

10.

Background  

In eukaryotic cells co- and post-translational protein translocation is mediated by the trimeric Sec61 complex. Currently, the role of the Sec61 complex β-subunit in protein translocation is poorly understood. We have shown previously that in Saccharomyces cerevisiae the trans-membrane domain alone is sufficient for the function of the β-subunit Sbh1p in co-translational protein translocation. In addition, Sbh1p co-purifies not only with the protein translocation channel subunits Sec61p and Sss1p, but also with the reticulon family protein Rtn1p.  相似文献   

11.
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.  相似文献   

12.
The translocation of secretory polypeptides into and across the membrane of the endoplasmic reticulum (ER) occurs at the translocon, a pore-forming structure that orchestrates the transport and maturation of polypeptides at the ER membrane. Recent data also suggest that misfolded or unassembled polypeptides exit the ER via the translocon for degradation by the cytosolic ubiquitin/proteasome pathway. Sec61p is a highly conserved multispanning membrane protein that constitutes a core component of the translocon. We have found that the essential function of the Saccharomyces cerevisiae Sec61p is retained upon deletion of either of two internal regions that include transmembrane domains 2 and 3, respectively. However, a deletion mutation encompassing both of these domains was found to be nonfunctional. Characterization of yeast mutants expressing the viable deletion alleles of Sec61p has revealed defects in post-translational translocation. In addition, the transmembrane domain 3 deletion mutant is induced for the unfolded protein response and is defective in the dislocation of a misfolded ER protein. These data demonstrate that the various activities of Sec61p can be functionally dissected. In particular, the transmembrane domain 2 region plays a role in post-translational translocation that is required neither for cotranslational translocation nor for protein dislocation.  相似文献   

13.
The signal recognition particle (SRP)-dependent targeting pathway facilitates rapid, efficient delivery of the ribosome-nascent chain complex (RNC) to the protein translocation channel. We test whether the SRP receptor (SR) locates a vacant protein translocation channel by interacting with the yeast Sec61 and Ssh1 translocons. Surprisingly, the slow growth and cotranslational translocation defects caused by deletion of the transmembrane (TM) span of yeast SRbeta (SRbeta-DeltaTM) are exaggerated when the SSH1 gene is disrupted. Disruption of the SBH2 gene, which encodes the beta subunit of the Ssh1p complex, likewise causes a growth defect when combined with SRbeta-DeltaTM. Cotranslational translocation defects in the ssh1DeltaSRbeta-DeltaTM mutant are explained by slow and inefficient in vivo gating of translocons by RNCs. A critical function for translocation channel beta subunits in the SR-channel interaction is supported by the observation that simultaneous deletion of Sbh1p and Sbh2p causes a defect in the cotranslational targeting pathway that is similar to the translocation defect caused by deletion of either subunit of the SR.  相似文献   

14.
In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1 + results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1 + in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species.  相似文献   

15.
SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex.  相似文献   

16.
Aberrant endoplasmic reticulum (ER) proteins are eliminated by ER-associated degradation (ERAD). This process involves protein retrotranslocation into the cytosol, ubiquitylation, and proteasomal degradation. ERAD substrates are classified into three categories based on the location of their degradation signal/degron: ERAD-L (lumen), ERAD-M (membrane), and ERAD-C (cytosol) substrates. In Saccharomyces cerevisiae, the membrane proteins Hrd1 and Doa10 are the predominant ERAD ubiquitin-protein ligases (E3s). The current notion is that ERAD-L and ERAD-M substrates are exclusively handled by Hrd1, whereas ERAD-C substrates are recognized by Doa10. In this paper, we identify the transmembrane (TM) protein Sec61 β-subunit homologue 2 (Sbh2) as a Doa10 substrate. Sbh2 is part of the trimeric Ssh1 complex involved in protein translocation. Unassembled Sbh2 is rapidly degraded in a Doa10-dependent manner. Intriguingly, the degron maps to the Sbh2 TM region. Thus, in contrast to the prevailing view, Doa10 (and presumably its human orthologue) has the capacity for recognizing intramembrane degrons, expanding its spectrum of substrates.  相似文献   

17.
The exocyst is a conserved protein complex proposed to mediate vesicle tethering at the plasma membrane. Previously, we identified SEB1/SBH1, encoding the beta subunit of the Sec61p ER translocation complex, as a multicopy suppressor of the sec15-1 mutant, defective for one subunit of the exocyst complex. Here we show the functional and physical interaction between components of endoplasmic reticulum translocon and the exocytosis machinery. We show that overexpression of SEB1 suppresses the growth defect in all exocyst sec mutants. In addition, overexpression of SEC61 or SSS1 encoding the other two components of the Sec61p complex suppressed the growth defects of several exocyst mutants. Seb1p was coimmunoprecipitated from yeast cell lysates with Sec15p and Sec8p, components of the exocyst complex, and with Sec4p, a secretory vesicle associated Rab GTPase that binds to Sec15p and is essential for exocytosis. The interaction between Seb1p and Sec15p was abolished in sec15-1 mutant and was restored upon SEB1 overexpression. Furthermore, in wild type cells overexpression of SEB1 as well as SEC4 resulted in increased production of secreted proteins. These findings propose a novel functional and physical link between the endoplasmic reticulum translocation complex and the exocyst.  相似文献   

18.
Zhou M  Schekman R 《Molecular cell》1999,4(6):925-934
Sec61p comprises the endoplasmic reticulum (ER) channel through which nascent polypeptides are imported and from which malfolded proteins have been suggested to be exported, or dislocated, back to the cytoplasm. We have devised a genetic screen for dislocation-specific mutant alleles of SEC61 from S. cerevisiae by employing the unfolded protein response to report on the accumulation of misfolded proteins in the ER. Three of the isolated sec61 alleles are fully proficient in protein translocation into the ER, but defective in the elimination of a misfolded ER luminal substrate and a short-lived ER membrane-spanning model protein, which are otherwise rapidly degraded by cytoplasmic proteolysis in wild-type cells. Our results point to the fourth luminal loop and third transmembrane domain of Sec61p that markedly influence dislocation. We suggest that distinct features of the Sec61-translocon direct the two-way translocation processes.  相似文献   

19.
The SEC61, SEC62 and SEC63 yeast gene products are membrane components of the apparatus that catalyses protein translocation into the endoplasmic reticulum (ER). In the hope of uncovering additional components of the translocation apparatus, we sought yeast genes whose overexpression would restore partial thermoresistance in a sec61 translocation-deficient mutant. The first extragenic Sec sixty-one suppressor, SSS1, is an essential single copy gene whose overexpression restores translocation in the sec61 mutant. Another extragenic suppressor was identified as TDH3, which encodes the major isozyme of the most abundant yeast protein, glyceraldehyde-3-phosphate dehydrogenase. TDH3 overexpression could exert an indirect effect by competitively inhibiting protein synthesis, thereby allowing the impaired translocation apparatus to cope with a reduced flow of newly synthesized secretory proteins. Depletion of the Sss1 protein rapidly results in accumulation of multiple secretory or membrane proteins devoid of post-translational modifications; the normally secreted alpha-factor accumulates on the cytosolic side of ER membranes. Thus, the SSS1 gene is required for continued translocation of secretory preproteins beyond their early association to ER membranes. Consistent with its essential role in protein translocation, the Sss1 protein localizes to the ER and homologues were detected in higher eukaryotes.  相似文献   

20.
The yeast Golgi membrane protein Rer1p is required for the retrieval of various endoplasmic reticulum (ER) membrane proteins such as Sec12p and Sec71p to the ER. We demonstrate here that the transmembrane domain (TMD) of Sec71p, a type-III membrane protein, contains an ER localization signal, which is required for physical recognition by Rer1p. The Sec71TMD-GFP fusion protein is efficiently retrieved to the ER by Rer1p. The structural feature of this TMD signal turns out to be the spatial location of polar residues flanking the highly hydrophobic core sequence but not the whole length of the TMD. On the Rer1p side, Tyr152 residue in the 4th TMD is important for the recognition of Sec12p but not Sec71p, suggesting that Rer1p interacts with its ligands at least in two modes. Sec71TMD-GFP expressed in the Deltarer1 mutant cells is mislocalized from the ER to the lumen of vacuoles via the multivesicular body (MVB) sorting pathway. In this case, not only the presence of polar residues in the Sec71TMD but also the length of the TMD is critical for the MVB sorting. Thus, the Rer1p-dependent ER retrieval and the MVB sorting in late endosomes both watch polar residues in the TMD but in a different manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号