首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The Bacillus subtilis FI DNA methyltransferase (M.BsuFI) modifies the outer cytosine of the DNA sequence CCGG, causing resistance against R.BsuFI and R.MspI restriction. The M.BsuFI gene was cloned and expressed in B.subtilis and Escherichia coli. As derived from the nucleotide sequence, the M.BsuFI protein has 409 amino acids, corresponding to a molecular mass of 46,918 daltons. Including these data we have compared the nucleotide and amino acid sequences of different CCGG recognizing enzymes. These analyses showed that M.BsuFI is highly related to two other CCGG specific methyltransferases, M.MspI and M.HpaII, which were isolated from Gram-negative bacteria. Between M.BsuFI and M.MspI the sequence similarity is particularly significant in a region, which has been postulated to contain the target recognition domains (TRDs) of cytosine-specific DNA methyltransferases. Apparently M.BsuFI and M.MspI, derived from phylogenetic distant organisms, use highly conserved structural elements for the recognition of the CCGG target sequence. In contrast the very same region of M.HpaII is quite different from those of M.BsuFI and M.MspI. We attribute this difference to the different targeting of methylation within the sequence CCGG, where M.HpaII methylates the inner, M.BsuFI/M.MspI the outer cytosine. Also the CCGG recognizing TRD of the multispecific B.subtilis phage SPR Mtase is distinct from that of the host enzyme, possibly indicating different requirements for TRDs operative in mono- and multispecific enzymes.  相似文献   

2.
Cloning and characterization of the HpaII methylase gene.   总被引:10,自引:9,他引:1       下载免费PDF全文
The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.  相似文献   

3.
The genes encoding the MspI restriction modification system, which recognizes the sequence 5' CCGG, have been cloned into pUC9. Selection was based on expression of the cloned methylase gene which renders plasmid DNA insensitive to MspI cleavage in vitro. Initially, an insert of 15 kb was obtained which, upon subcloning, yielded a 3 kb EcoRI to HindIII insert, carrying the genes for both the methylase and the restriction enzyme. This insert has been sequenced. Based upon the sequence, together with appropriate subclones, it is shown that the two genes are transcribed divergently with the methylase gene encoding a polypeptide of 418 amino acids, while the restriction enzyme is composed of 262 amino acids. Comparison of the sequence of the MspI methylase with other cytosine methylases shows a striking degree of similarity. Especially noteworthy is the high degree of similarity with the HhaI and EcoRII methylases.  相似文献   

4.
Cloning and expression of the MspI restriction and modification genes   总被引:9,自引:0,他引:9  
D O Nwankwo  G G Wilson 《Gene》1988,64(1):1-8
The genes for the MspI restriction (R) and modification enzymes (recognition sequence CCGG) have been cloned into Escherichia coli using the vector pBR322. Clones carrying both genes have been isolated from libraries prepared with EcoRI, HindIII and BamHI. The smallest fragment that encodes both activities is a 3.6-kb HindIII fragment. Plasmids purified from the clones are fully resistant to digestion by MspI, indicating that the modification gene is functional in E. coli. The clones remain sensitive to phage infection, however, indicating that the endonuclease is dysfunctional. When the R gene is brought under the control of the inducible leftward promoter from phage lambda, the level of endonuclease increases and the level of methylase decreases, suggesting that the genes are transcribed in opposite directions.  相似文献   

5.
The gene for the MspI modification enzyme from Moraxella was cloned in Escherichia coli using the plasmid vector pBR322. Selection of transformants carrying the gene was based on the resistance of the modified plasmid encoding the enzyme to cleavage by MspI. Both chromosomal and plasmid DNA were modified in the selected clones. None of the clones obtained produced the cognate restriction enzyme which suggests that in this system the genes for the restriction enzyme and methylase are not closely linked. Crude cell extracts prepared from the recombinant strains, but not the host (E. coli HB101), contain an S-adenosylmethionine-dependent methyltransferase specific for the MspI recognition site, CCGG. Production of the enzyme is 3-4-fold greater in the transformants than in the original Moraxella strain. 5-Methylcytosine was identified as the product of the reaction chromatographically. The outer cytosine of the recognition sequence, *CCGG, was shown to be the site of methylation by DNA-sequencing methods. This modification blocks cleavage by both MspI and its isoschizomer HpaII. HpaII, but not MspI, is able to cleave the unmethylated strand of a hemimethylated substrate. The relevance of these results to the use of MspI and HpaII to analyze patterns of methylation in genomic DNA is discussed.  相似文献   

6.
The extent of methylation of the internal C in the sequence CCGG in DNA from various eukaryotic sources has been determined using the restriction enzyme MspI known to be specific for this sequence. The methylation of the CCGG sequence is reflected in the restriction pattern obtained by DNA treated with MspI and its isoschizomer HpaII and analyzed by gel electrophoresis. A direct method for detection 5-methylcytosine in the sequence CCGG has been deviced. DNA fragments obtained with MspI were radioactively labeled at their 5' ends and subsequently degraded to the corresponding 5'-deoxyribonucleoside monophosphates. 5 methylcytidylic acid has been found in most of the 5' ends of MspI fragments of calf thymus DNA (about 90%) indicating heavy methylation of the sequence CCGG in calf thymus DNA. The results also reveal a symmetric methylation of both strands at this sequence in calf thymus DNA. In contrast, the CCGG sequence in other eukaryotic DNAs from organisms like Neurospora, Drosophila and Herpes virus proved to be undermethylated at this sequence.  相似文献   

7.
The enzymes of the Bacillus subtilis BsuBI restriction/modification (R/M) system recognize the target sequence 5'CTGCAG. The genes of the BsuBI R/M system have been cloned and sequenced and their products have been characterized following overexpression and purification. The gene of the BsuBI DNA methyltransferase (M.BsuBI) consists of 1503 bp, encoding a protein of 501 amino acids with a calculated M(r) of 57.2 kD. The gene of the restriction endonuclease (R.BsuBI), comprising 948 bp, codes for a protein of 316 amino acids with a predicted M(r) of 36.2 kD. M.BsuBI modifies the adenine (A) residue of the BsuBI target site, thus representing the first A-N6-DNA methyltransferase identified in B. subtilis. Like R.PstI, R.BsuBI cleaves between the A residue and the 3' terminal G of the target site. Both enzymes of the BsuBI R/M system are, therefore, functionally identical with those of the PstI R/M system, encoded by the Gram negative species Providencia stuartii. This functional equivalence coincides with a pronounced similarity of the BsuBI/PstI DNA methyltransferases (41% amino acid identity) and restriction endonucleases (46% amino acid identity). Since the genes are also very similar (58% nucleotide identity), the BsuBI and PstI R/M systems apparently have a common evolutionary origin. In spite of the sequence conservation the gene organization is strikingly different in the two R/M systems. While the genes of the PstI R/M system are separated and transcribed divergently, the genes of the BsuBI R/M system are transcribed in the same direction, with the 3' end of the M gene overlapping the 5' end of the R gene by 17 bp.  相似文献   

8.
A Kiss  F Baldauf 《Gene》1983,21(1-2):111-119
Two modification methylase genes of Bacillus subtilis R were cloned in Escherichia coli by using a selection procedure which is based on the expression of these genes. Both genes code for DNA-methyltransferases which render the DNA of the cloning host E. coli HB101 insensitive to the BspRI (5'-GGCC) endonuclease of Bacillus sphaericus R. One of the cloned genes is part of the restriction-modification (RM) system BsuRI of B. subtilis R with specificity for 5'-GGCC. The other one is associated with the lysogenizing phage SP beta B and produces the methylase M.BsuP beta BI with specificity for 5'-GGCC. The fragment carrying the SP beta B-derived gene also directs the synthesis in E. coli of a third methylase activity (M.BsuP beta BII), which protects the host DNA against HpaII and MspI cleavage within the sequence 5'-CCGG. Indirect evidence suggests that the two SP beta B modification activities are encoded by the same gene. No cross-hybridization was detected either between the M.BsuRI and M.BsuP beta B genes or between these and the modification methylase gene of B. sphaericus R, which codes for the enzyme M.BspRI with 5'-GGCC specificity.  相似文献   

9.
10.
The MspI restriction-modification system, which recognizes the sequence 5'-CCGG-3', has been previously cloned and sequenced (1). We subcloned the methyltransferase gene (M.MspI) downstream of the ptac promoter in the multicopy vector pUC119 and overexpressed it in E. coli. Upon induction with IPTG, M.MspI constitutes more than 10% of cellular protein. A scheme has been devised to purify large amounts of biologically active M.MspI to apparent homogeneity from these overexpressing E. coli cells. Approximately 0.8 mg of pure M.MspI per gram of cells (wet weight) can be obtained. The apparent molecular weight of M.MspI is 49 kD, by SDS gel electrophoresis and 48-54 kD by gel filtration. At low concentrations (less than 0.4 mg/ml), the methyltransferase is a monomer in solution but at higher concentrations (greater than 3.0 mg/ml) it exists predominantly as a dimer. Polyclonal antibodies raised against M.MspI cross-react with the DNA-methyltransferases of several other restriction-modification systems.  相似文献   

11.
The genes coding for the GGYRCC specific restriction/modification system HgiCI from Herpetosiphon giganteus Hpg9 have been cloned in Escherichia coli in three steps. As an initial step, the methyltransferase gene could be obtained after heterologous in vitro selection of a plasmid gene bank by cleavage with the isoschizomeric restriction endonuclease BanI. The adjacent endonuclease gene was cloned following Southern blot analysis of flanking genomic regions. The two genes code for polypeptides of 420 amino acids (M.HgiCI) and 345 amino acids (R.HgiCI). Establishing a functional endonuclease gene could only be achieved using a tightly regulated expression system or by methylation of the genomic DNA prior to transformation of the endonuclease gene. The methyltransferase M.HgiCI shows significant similarities to the family of 5-methylcytidine methyltransferases. Striking similarities could be found with both the isoschizomeric endonuclease and methyltransferase of the BanI restriction/modification system from Bacillus aneurinolyticus.  相似文献   

12.
The sequence specificities of three Bacillus subtilis restriction/modification systems were established: (i) BsuM (CTCGAG), an isoschizomer to XhoI; (ii) BsuE (CGCG), an isoschizomer to FnuDII; and (iii) BsuF (CCGG), an isoschizomer to MspI, HpaII. The BsuM modification enzyme methylates the 3' cytosine of the recognition sequence. The BsuF modification enzyme methylates the 5' cytosine of the sequence, rendering such sites resistant to MspI degradation and leaving the majority of sites sensitive to HpaII degradation.  相似文献   

13.
14.
Genes coding for the restriction-modification system Fsp4HI, recognizing the sequence 5'-GCNGC-3' have been cloned in Escherichia coli ER2267 cells and its primary structure has been determined. This RM system consists of two genes: the DNA-methyltransferase gene which is followed by the restriction endonuclease gene in the same direction. The analysis of amino acid sequences of the proteins showed that M.Fsp4HI belongs to C5 DNA-methyltransferases, and the restriction enzyme shares more or less significant homology to just a few restriction endonucleases with related recognition sequences. M.Fsp4HI enzyme was purified by means of column chromatography. According to the results of biochemical study it was considered that M.Fsp4HI has its optimal activity at 30 degree C and pH 7.5. M.Fsp4HI modifies the first cytosine residue in the sequence 5'-GCNGC-3'.  相似文献   

15.
16.
17.
The genes from Moraxella bovis encoding the MboI restriction--modification system were cloned and expressed in Escherichia coli. Three open reading frames were found in the sequence containing the genes. These genes, which we named mboA, mboB, and mboC, had the same orientation in the genome. Genes mboA and mboC encoded MboI methyltransferases (named M.MboA and M.MboC) with 294 and 273 amino acid residues, respectively. The mboB gene coded for MboI restriction endonuclease (R.MboI) with 280 amino acid residues. Recombinant E.coli-MBOI, which contained the whole MboI system, overproduced R.MboI. R.MboI activity from E.coli-MBOI was 480-fold that of M.bovis. The amino acid sequences deduced from these genes were compared with those of other restriction--modification systems. The protein sequences of the MboI system had 38-49% homology with those of the DpnII system.  相似文献   

18.
Cloning the KpnI restriction-modification system in Escherichia coli   总被引:3,自引:0,他引:3  
The genes encoding the KpnI restriction and modification (R-M) system from Klebsiella pneumoniae, recognizing the sequence, 5'-GGTAC decreases C-3', were cloned and expressed in Escherichia coli. Although the restriction endonuclease (ENase)- and methyltransferase (MTase)-encoding genes were closely linked, initial attempts to clone both genes as a single DNA fragment in a plasmid vector resulted in deletions spanning all or part of the gene coding for the ENase. Initial protection of the E. coli host with MTase expressed on a plasmid was required to stabilize a compatible plasmid carrying both the ENase- and the MTase-encoding genes on a single DNA fragment. However, once established, the MTase activity can be supplied in cis to the kpnIR gene, without an extra copy of kpnIM. A chromosomal map was generated localizing the kpnIR and kpnIM genes on 1.7-kb and 3.5-kb fragments, respectively. A final E. coli strain was constructed, AH29, which contained two compatible plasmids: an inducible plasmid carrying the kpnIR gene which amplifies copy number at elevated temperatures and a pBR322 derivative expressing M.KpnI. This strain produces approx. 10 million units of R.KpnI/g of wet-weight cells, which is several 1000-fold higher than the level of R.KpnI produced by K. pneumoniae. In addition, DNA methylated with M.KpnI in vivo does not appear to be restricted by the mcrA, mcrB or mrr systems of E. coli.  相似文献   

19.
A nucleotide sequence was established for the full-length Sporosarcina species 9D operon coding for enzymes of type II restriction-modification system Sse9I. These enzymes recognize the tetranucleotide DNA sequence 5'-AATT-3'. The operon was shown to consist of three genes that are situated with the order: sse9IC-sse9IR-sse9IM and are transcribed in the same direction. These genes encode the control protein (C.Sse9I), restriction endonuclease (R.Sse9I) and DNA-methyltransferase (M.Sse9I), respectively. A specific DNA sequence (C-box) presumably recognized by C-protein was found immediately upstream of sse9IC gene. The comparative analysis of amino acid sequences of C.Sse9I and R.Sse9I with those of relative proteins has been done. It was found that R.Sse9I revealed the most homology with the segments of R.MunI (5'-CAATTG-3') and R.EcoRI (5'-GAATTC-3'), where amino acid residues, responsible for recogniton of AATT core sequence are located. The sse9IR gene was cloned into the temperature-inducible expression vector, and recombinant Sse9I restriction endonuclease preparation was isolated.  相似文献   

20.
A novel gene fusion system has been constructed for fusions to the 5' end of gene zz, encoding a two-domain analogue of staphylococcal protein A designated ZZ. Four different genes were fused to the 5' end of zz, and their gene products were analyzed. One of the genes encodes a protein located intracellularly in Escherichia coli and the other three genes encode gene products destined for secretion across the cytoplasmic membrane by the presence of an amino terminal signal sequence. After production in E. coli, the fusion proteins were purified in a single step by IgG-affinity chromatography. The purified ZZ fusions could be used directly for amino terminal sequencing to confirm the start of translation of the intracellular product and the processing of the signal peptide of the translocated products. This is the first example of ZZ fusions to the C-terminus of gene products. To simplify the general use of fusions to the 5' end of zz, a new plasmid vector was constructed containing a multi restriction enzyme cloning linker and the lacZ' gene which enables screening for production in alpha-complementing supE strains of E. coli on indicator plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号