首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning and characterization of the HpaII methylase gene.   总被引:10,自引:9,他引:1       下载免费PDF全文
The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.  相似文献   

2.
E Szomolányi  A Kiss  P Venetianer 《Gene》1980,10(3):219-225
The gene coding for the sequence-specific modification methylase methM . BspI of Bacillus sphaericus R has been cloned in Escherichia coli by means of plasmid pBR322. The selection was based on the expression of the cloned gene which rendered the recombinant plasmid resistant to BspI restriction endonuclease cleavage. The gene is carried by a 9 kb BamHI fragment and by a smaller 2.5 kb EcoRI fragment derived from the BamHI fragment. The Bsp-specific methylase level was found to be higher in the recombinant clones than in the parental strain. The methylase gene is probably located on the Bacillus sphaericus chromosome, and not on a plasmid known to be carried by this strain. The recombinant clones do not exhibit an BspI restriction endonuclease activity.  相似文献   

3.
A Kiss  F Baldauf 《Gene》1983,21(1-2):111-119
Two modification methylase genes of Bacillus subtilis R were cloned in Escherichia coli by using a selection procedure which is based on the expression of these genes. Both genes code for DNA-methyltransferases which render the DNA of the cloning host E. coli HB101 insensitive to the BspRI (5'-GGCC) endonuclease of Bacillus sphaericus R. One of the cloned genes is part of the restriction-modification (RM) system BsuRI of B. subtilis R with specificity for 5'-GGCC. The other one is associated with the lysogenizing phage SP beta B and produces the methylase M.BsuP beta BI with specificity for 5'-GGCC. The fragment carrying the SP beta B-derived gene also directs the synthesis in E. coli of a third methylase activity (M.BsuP beta BII), which protects the host DNA against HpaII and MspI cleavage within the sequence 5'-CCGG. Indirect evidence suggests that the two SP beta B modification activities are encoded by the same gene. No cross-hybridization was detected either between the M.BsuRI and M.BsuP beta B genes or between these and the modification methylase gene of B. sphaericus R, which codes for the enzyme M.BspRI with 5'-GGCC specificity.  相似文献   

4.
5.
Restriction maps were constructed for the two human 21-hydroxylase genes (21-OHA and 21-OHB) by using DNA from subjects homozygous for a deletion of each gene. Comparing the patterns of these two genes, a KpnI restriction site occurred in the 21-OHA gene in place of a TaqI site in the 21-OHB gene about 1-kb from the 5' end of the gene, and an extra EcoRI site was located 500 bp 5' to the common EcoRI site. The DNA of fourteen unrelated normal subjects was digested with nine restriction endonucleases (AccI, BamHI, BgIII, EcoRI, HindIII, KpnI, MspI, SacI and TaqI). Restriction fragment length polymorphisms were found with EcoRI, HindIII and AccI that resulted from polymorphic endonuclease sites outside the genes.  相似文献   

6.
A 3.4-kilobase EcoRI restriction endonuclease fragment has been cloned from the facultatively photoheterotrophic bacterium Rhodobacter sphaeroides and shown to contain the structural gene (prkA) for phosphoribulokinase (PRK) activity. The PRK activity was characterized in Escherichia coli, and the product of the reaction was identified. The prkA gene was localized to a 1,565-base-pair EcoRI-PstI restriction endonuclease fragment and gave rise to a 33-kilodalton polypeptide both in vivo and in vitro. The gene product produced in E. coli was shown to be identical to the gene product produced in R. sphaeroides. The amino acid sequence for the amino-terminal region deduced from the DNA sequence confirmed that derived for partially purified PRK derived from both E. coli and R. sphaeroides. In addition, the 3.4-kilobase EcoRI restriction endonuclease fragment coded for a 37-kilodalton polypeptide of unknown function, and preliminary evidence indicates that this DNA fragment is linked to genes coding for other activities significant in photosynthetic carbon assimilation. The genetic organization and proposed operon structure of this DNA fragment are discussed.  相似文献   

7.
The genes encoding the MspI restriction modification system, which recognizes the sequence 5' CCGG, have been cloned into pUC9. Selection was based on expression of the cloned methylase gene which renders plasmid DNA insensitive to MspI cleavage in vitro. Initially, an insert of 15 kb was obtained which, upon subcloning, yielded a 3 kb EcoRI to HindIII insert, carrying the genes for both the methylase and the restriction enzyme. This insert has been sequenced. Based upon the sequence, together with appropriate subclones, it is shown that the two genes are transcribed divergently with the methylase gene encoding a polypeptide of 418 amino acids, while the restriction enzyme is composed of 262 amino acids. Comparison of the sequence of the MspI methylase with other cytosine methylases shows a striking degree of similarity. Especially noteworthy is the high degree of similarity with the HhaI and EcoRII methylases.  相似文献   

8.
9.
The gene for the MspI modification enzyme from Moraxella was cloned in Escherichia coli using the plasmid vector pBR322. Selection of transformants carrying the gene was based on the resistance of the modified plasmid encoding the enzyme to cleavage by MspI. Both chromosomal and plasmid DNA were modified in the selected clones. None of the clones obtained produced the cognate restriction enzyme which suggests that in this system the genes for the restriction enzyme and methylase are not closely linked. Crude cell extracts prepared from the recombinant strains, but not the host (E. coli HB101), contain an S-adenosylmethionine-dependent methyltransferase specific for the MspI recognition site, CCGG. Production of the enzyme is 3-4-fold greater in the transformants than in the original Moraxella strain. 5-Methylcytosine was identified as the product of the reaction chromatographically. The outer cytosine of the recognition sequence, *CCGG, was shown to be the site of methylation by DNA-sequencing methods. This modification blocks cleavage by both MspI and its isoschizomer HpaII. HpaII, but not MspI, is able to cleave the unmethylated strand of a hemimethylated substrate. The relevance of these results to the use of MspI and HpaII to analyze patterns of methylation in genomic DNA is discussed.  相似文献   

10.
Cloning chromosomal lac genes of Klebsiella pneumoniae   总被引:4,自引:0,他引:4  
C MacDonald  M Riley 《Gene》1983,24(2-3):341-345
The chromosomal gene for beta-galactosidase from Klebsiella pneumoniae strain T17R1 and associated regulatory genes have been cloned as a 5-kb HindIII fragment in the pBR322 plasmid vector. The beta-galactoside permease gene is not present in a functional form in the 5-kb fragment. The K. pneumoniae genes are expressed in an Escherichia coli host. The synthesis of beta-galactosidase is inducible by isopropyl-beta-D-galactosidase (IPTG) and is sensitive to catabolite repression. There appears to be greater homology between the K. pneumoniae and E. coli structural genes for beta-galactosidase than there is between the respective repressor genes.  相似文献   

11.
Bacteroides nodosus is the primary causative agent of ovine foot rot. Virulent isolates of this bacterium contain fimbriae which appear to play a major role in both infectivity and protective immunity. This paper presents the cloning and expression in Escherichia coli of the gene encoding the structural subunit of the fimbriae of B. nodosus. Total DNA was isolated from B. nodosus VCS 1001 (serogroup A), digested with HindIII, and inserted into the positive-selection vector pTR262. Recombinant E. coli clones were screened directly with anti-fimbrial antiserum by using a colony immunoassay. Several positive colonies were identified, each of which contained the same 5.5-kilobase HindIII insert. The prototype has been designated pBA101. Some clones also contained additional flanking sequences from the B. nodosus genome. Western transfer analyses verified that the positive clones were producing the B. nodosus fimbrial structural subunit, molecular weight ca. 17,500. The level of expression of the antigen in E. coli was comparable to that in B. nodosus itself and was unaffected by the insertion site or orientation of the cloned fragment, indicating that synthesis was being directed from an internal promoter. Restriction mapping and deletion analyses localized the fimbrial subunit gene to the vicinity of a PvuII site near the central region of the original HindIII insert. The expressed antigen was located in the membrane-cell wall fraction and may be exposed on the surface of the recombinant E. coli cells.  相似文献   

12.
The Escherichia coli plasmid R124 codes for a type I restriction and modification system EcoR124 and carries genetic information, most probably in the form of a "silent copy," for the expression of a different R-M specificity R124/3. Characteristic DNA rearrangements have been shown to accompany the switch in specificity from R124 to R124/3 and vice versa. We have cloned a 14.2-kb HindIII fragment from R124 and shown that it contains the hsdR, hsdM, and hsdS genes which code for the EcoR124 R-M system. An equivalent fragment from the plasmid R124/3 following the switch in R-M specificity has also been cloned and shown to contain the genes coding for the EcoR124/3 R-M system. These fragments, however, lack a component present on the wild-type plasmid essential for the switch in specificity. Restriction fragment maps and preliminary heteroduplex analysis indicate the near identity of the genes that encode the two different DNA recognition specificities. Transposon mutagenesis was used to locate the positions of the hsdR, hsdM, and hsdS genes on the cloned fragments in conjunction with complementation tests for gene function. Indirect evidence indicates that hsdR is expressed from its own promoter and that hsdM and hsdS are expressed from a single promoter, unidirectionally.  相似文献   

13.
A gene library from Deinococcus radiodurans has been constructed in the cosmid pJBFH. A 51.5-kb hybrid cosmid, pUE40, that transduced Escherichia coli HB101 from leucine dependence to independence was selected, and a 6.9-kb fragment which carried the leuB gene from D. radiodurans was subcloned into the EcoRI site of pAT153. The DNA repair genes mtcA, mtcB, uvsC, uvsD and uvsE, which code for two D. radiodurans UV endonucleases were identified by transforming appropriate repair-deficient mutants of D. radiodurans to repair proficiency with DNA derived from the gene library. Hybrid cosmid pUE50 (37.9 kb) containing an insert carrying both the mtcA and mtcB genes was selected and 5.6- and 2.7-kb DNA fragments carrying mtcA and mtcB, respectively, i.e., the genes that code for UV endonuclease alpha, were subcloned into the EcoRI site of pAT153. The three genes uvsC, uvsD and uvsE, that code for UV endonuclease beta, were all present in the 46.0-kb hybrid cosmid pUE60. The uvsE gene in a 12.2-kb fragment was subcloned into the HindIII site of pAT153 and the size of the insert reduced to 6.1 kb by deletion of a 6.7-kb fragment from the hybrid plasmid pUE62. None of the uvs genes introduced into the UV-sensitive E. coli CSR603 (uvrA-) was able to complement its repair defect. The mtcA, uvsC, uvsD and uvsE genes were found in the 52.5-kb hybrid cosmid pUE70. It is concluded that the DNA repair genes mtcA, mtcB, uvsC, uvsD and uvsE are located within an 83.0-kb fragment of the D. radiodurans genome.  相似文献   

14.
15.
The genes coding for the GGYRCC specific restriction/modification system HgiCI from Herpetosiphon giganteus Hpg9 have been cloned in Escherichia coli in three steps. As an initial step, the methyltransferase gene could be obtained after heterologous in vitro selection of a plasmid gene bank by cleavage with the isoschizomeric restriction endonuclease BanI. The adjacent endonuclease gene was cloned following Southern blot analysis of flanking genomic regions. The two genes code for polypeptides of 420 amino acids (M.HgiCI) and 345 amino acids (R.HgiCI). Establishing a functional endonuclease gene could only be achieved using a tightly regulated expression system or by methylation of the genomic DNA prior to transformation of the endonuclease gene. The methyltransferase M.HgiCI shows significant similarities to the family of 5-methylcytidine methyltransferases. Striking similarities could be found with both the isoschizomeric endonuclease and methyltransferase of the BanI restriction/modification system from Bacillus aneurinolyticus.  相似文献   

16.
Many strains of Pseudomonas aeruginosa possess pili which have been implicated in the pathogenesis of the organism. This report presents the cloning and expression in Escherichia coli of the gene encoding the structural subunit of the pili of P. aeruginosa PAK. Total DNA from this strain was partially digested with Sau3A and inserted into the cloning vector pUC18. Recombinant E. coli clones were screened with oligonucleotide probes prepared from the constant region of the previously published amino acid sequence of the mature pilin subunit. Several positive clones were identified, and restriction maps were generated. Each clone contained an identical 1.1-kilobase HindIII fragment which hybridized to the oligonucleotide probes. Western blot analysis showed that all of the clones expressed small amounts of the P. aeruginosa pilin subunit, which has a molecular mass of ca. 18,000. This expression occurred independently of the orientation of the inserted DNA fragments in the cloning vector, indicating that synthesis was directed from an internal promoter. However, subclones containing the 1.1-kilobase HindIII fragment in a specific orientation produced an order of magnitude more of the pilin subunit. While the expressed pilin antigen was located in both the cytoplasmic and outer membrane fractions of E. coli, none appeared to be polymerized into a pilus structure.  相似文献   

17.
R.MwoI, a type-II restriction enzyme with the new specificity 5'-GCN7GC-3', was found in extracts of the thermophilic archaebacterium, Methanobacterium wolfei. R.MwoI cleaves duplex DNA producing fragments with 3-nt, 3'-terminal extensions, thus: GCN5/N2GC. The genes coding for the MwoI restriction and modification enzymes were cloned into Escherichia coli on the plasmid vector pBR322. The clones synthesize a low level of R.MwoI endonuclease. The plasmids display incomplete MwoI-specific modification, suggesting that the clones synthesize a low level of the M.MwoI methyltransferase, too.  相似文献   

18.
Cloning and analysis of the HaeIII and HaeII methyltransferase genes   总被引:13,自引:0,他引:13  
B E Slatko  R Croft  L S Moran  G G Wilson 《Gene》1988,74(1):45-50
The HaeIII methyltransferase (MTase) gene from Haemophilus aegyptius (recognition sequence: 5'-GGCC-3') was cloned into Escherichia coli in the plasmid vector pBR322. The gene was isolated on a single EcoRI fragment and on a single HindIII fragment. Clones carrying additional adjacent fragments were found to code also for the HaeII restriction endonuclease and HaeII modification MTase (recognition sequence: 5'-PuGCGCPy-3'). The sequence of the HaeIII modification gene was determined. The inferred amino acid sequence of the protein was found to share extensive similarity with other sequenced m5C-MTases. The central 'non-conserved' region of the M.HaeIII MTase, thought to form the nucleotide sequence-specificity domain, is almost identical to that of the M.BsuRI, M.BspRI and M.NgoPII MTases, which also recognize the sequence 5'-GGCC-3'.  相似文献   

19.
Cloning the KpnI restriction-modification system in Escherichia coli   总被引:3,自引:0,他引:3  
The genes encoding the KpnI restriction and modification (R-M) system from Klebsiella pneumoniae, recognizing the sequence, 5'-GGTAC decreases C-3', were cloned and expressed in Escherichia coli. Although the restriction endonuclease (ENase)- and methyltransferase (MTase)-encoding genes were closely linked, initial attempts to clone both genes as a single DNA fragment in a plasmid vector resulted in deletions spanning all or part of the gene coding for the ENase. Initial protection of the E. coli host with MTase expressed on a plasmid was required to stabilize a compatible plasmid carrying both the ENase- and the MTase-encoding genes on a single DNA fragment. However, once established, the MTase activity can be supplied in cis to the kpnIR gene, without an extra copy of kpnIM. A chromosomal map was generated localizing the kpnIR and kpnIM genes on 1.7-kb and 3.5-kb fragments, respectively. A final E. coli strain was constructed, AH29, which contained two compatible plasmids: an inducible plasmid carrying the kpnIR gene which amplifies copy number at elevated temperatures and a pBR322 derivative expressing M.KpnI. This strain produces approx. 10 million units of R.KpnI/g of wet-weight cells, which is several 1000-fold higher than the level of R.KpnI produced by K. pneumoniae. In addition, DNA methylated with M.KpnI in vivo does not appear to be restricted by the mcrA, mcrB or mrr systems of E. coli.  相似文献   

20.
Seven DNA markers from five genes and one chromosomal region were analysed in Mongolian population using the polymerase chain reaction. The frequencies of alleles of the polymorphisms detected with HindIII in the HBG-2, AvaII in the HBB, MspI and XbaI in the Apo-B, PstI in the D7S8, HincII in the LDLR and allele frequency of the minisatellite fragment in the AT-3 have been determined. The results of the RELP for Apo-B(MspI), LDLR, D7S8 and AT-3 are obtained for the first time among Mongoloids. DNA markers studied demonstrated high level of polymorphisms in the population of Mongolia, except for XbaI and MspI restriction sites at the Apo-B locus. The data obtained for Mongolian population and the literature data were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号