首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
Aconitum pendulum is a dominant weed in bare‐land meadows on the Tibetan plateau and infected areas are very difficult to restore because of the allelopathic effects of this weed. We wanted to select native grasses to restore bare‐land meadows dominated by this toxic weed and tested the allelopathic effect of A. pendulum on seed germination and growth of roots and shoots of five native forage grasses (Elymus nutans, E. sibiricus, Poa crymophila, Festuca sinensis, Bromus inermis). Leaf exudates and high concentrations of root and stem exudates of A. pendulum inhibited seed germination as well as growth of roots and shoots. The allelopathic effect of A. pendulum leaf exudates was stronger than that of roots and stems. Poa crymophila was most resistant to inhibition by A. pendulum, whereas F. sinensis was the most susceptible grass. We conclude that P. crymophila is more suitable than the other four native grasses for sowing in pastures when restoring bare‐land meadows dominated by A. pendulum in the Tibetan plateau.  相似文献   

2.
Glasshouse experiments were conducted to elicit biochemical substantiation for the observed difference in resistance to nematode infection in roots colonized by mycorrhiza, and susceptibility of the fresh flush of roots of the same plant that escaped mycorrhizal colonization. Tomato roots were assayed for their biochemical profiles with respect to total proteins, total phenols, indole acetic acid, activities of polyphenol oxidase, phenylalanine ammonia lyase and indole acetic acid oxidase. The roots of the same plant (one set) received Glomus fasciculatum and G. fasciculatum plus juveniles of Meloidogyne incognita separately; and half the roots of second set of plants received G. fasciculatum while the other half of roots did not receive any treatment. Roots colonized by G. fasciculatum recorded maximum contents of proteins and phenols followed by that of the roots that received G. fasciculatum plus M. incognita. However, IAA content was lowest in the roots that received mycorrhiza or mycorrhiza plus juveniles of root-knot nematode and correspondingly. Roots that received juveniles of root-knot nematode recorded maximum IAA content and per cent increase over healthy check and mycorrhiza-inoculated roots. The comparative assay on the activities of PPO, PAL and IAA oxidase enzymes in treated and healthy roots of tomato, indicated that PAL and IAA oxidase activities were maximum in G. fasciculatum colonized roots followed by the roots that received mycorrhiza plus juveniles of root-knot nematode, while the activity of PPO was minimum in these roots. The roots that received juveniles of root-knot nematode recorded minimum PAL and IAA oxidase activities and maximum PPO activity. Since the roots of same plant that received mycorrhiza and that did not receive mycorrhiza; and the plant that received nematode alone and mycorrhiza plus nematode recorded differential biochemical contents of proteins, total phenols and IAA, and differential activities of enzymes under study, it was evident that the biochemical defense response to mycorrhizal colonization against root-knot nematodes was localized and not systemic. This explained for the response of plant that differed in root galling due to nematode infection in presence of mycorrhizal colonization. The new or fresh roots which missed mycorrhizal colonization, got infected by nematodes and developed root galls.  相似文献   

3.
The relationship between active oxygen species (AOS) and membrane damage, and between antioxidant enzyme activity and chilling tolerance has been documented, but the mechanisms responsible for perennial forage grass to survive winter with temperatures at ?30°C in temperate alpine regions is not well understood. In this study, the seasonal pattern of enzymatic antioxidant systems superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and lipid peroxidation in roots and leaves of alpine perennial grasses grown in their natural environment were investigated to understand the role of the enzymatic antioxidant system in freezing tolerance of perennial grasses. Four grasses, Poa sphyondylodes Trine., Bromus inermis Leyss., Bromus sinensis Keng. and Elymus nutans Griseb., were established in alpine conditions in 1993. The grasses were sampled at approximately semi‐monthly intervals in the autumn of 1995 and spring of 1996. The results showed that leaves were dead in the autumn and membrane damage seems to play a key role in the decline of this organ. Antioxidant enzyme activities of the roots strongly changed with declining temperature in the autumn and winter or increasing temperature in the spring. With the decrease in temperature in the autumn the antioxidant enzyme activities increased rapidly, reaching maximum values in early November and then slowly declining during the following winter period, although they were still higher than in September In the spring, antioxidant enzymes activities increased again in the roots with the rise of temperature from mid April to early May when the shoots began re‐growth. In contrast, thiobarbituric acid‐reactive substances content in the roots increased markedly in the autumn, reaching maximum values in early October and remaining constant with little fluctuation during the following winter. In the autumn when the roots experienced winter acclimation, the formation of freezing tolerance in the roots was correlated with the activities of the antioxidant enzyme, indicating that antioxidant activity systems in the roots played an important role in limiting the production of free radicals to protect membrane integrity. Freezing tolerance in alpine grasses correlated with an increased capacity to scavenge or detoxify activated AOS by the antioxidant enzymatic system. AOS accumulated with decreasing temperature in early cold acclimation may be an inducer in activating the antioxidant enzyme defence system for the formation of freezing tolerance in roots.  相似文献   

4.
Treatments with γ-amino-n-butyric acid (GABA), ascorbic acid (vitamin C) and chitosan by foliar spray or root dipping technique to eggplant growing under greenhouse conditions before and after inoculation of Meloidogyne incognita showed a generalised increase in the activity of the enzymes, peroxidase (POX), polyphenol oxidase (PPO) and chitinase as compared with the infected non treated control. The maximum increase in POX activity occurred after 10?days of nematode inoculation. The relative PPO activity with chitosan at 2500?ppm, GABA at 5000?ppm and ascorbic acid at 10?ppm using root dipping was found to be 375, 338 and 175% of control, respectively. As for PPO oxidase, the maximum activity was observed after five?days of nematode inoculation by using ascorbic acid at 10?ppm followed by GABA at 5000?ppm and chitosan at 2500?ppm by root dipping (800, 767 and 600% of control), respectively, while the highest chitinase enzyme activity (281% of control) was observed using chitosan at 2500?ppm after 10?days of inoculation.  相似文献   

5.
Allelopathy is an untapped resource for weed control in crops that could give good possibilities for environmentally sound, integrated crop production. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds, called allelochemicals, which escape into the environment. Allelochemicals can be produced by weeds and affect crops, and the reverse is also true. Allelopathic interactions include weed-weed, weed-crop, and crop-crop. Allelopathy offers potential for selective biological weed control for instance weed-suppressing crops and the use of plant residues in cropping systems, allelopathic rotational crops, or companion plants with allelopathic potential. Bromus species occur in many habitats in temperate regions of the world, including America, Eurasia, Australia, and Africa. The genus Lolium is one of the most important forage grasses. The weed species usually grow in the same production zones as wheat and are considered weeds since they parasitize wheat fields. Some of the weed species in these two genus have been reported to have allelopathic effect. One of the methods that has been successful in studying allelopathic activity are bioassays. Laboratory experiments were conducted to determine allelopathic effect of watery shoot extracts of four weed species of the Poaceae family, namely Bromus rigidus, Bromus diandrus, Lolium multiflorum and Lolium temulentum on germination and growth of winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.), corn (Zea mays L), perennial ryegrass (Lolium perenne L.), bean (Phaseolus sp.) and sunflower (Helianthus annuus L.) and on each other. The experiment was carried out during the period March 2010 to October 2010. Twenty five seeds were put into one Petri-dish on filter paper, adding 15ml of extract to each in four repeats. The germination took place in a Binder-type thermostat in the dark. The timing of germination was checked in every two days and the rate of growth was estimated after a week, by counting the number of germinated seeds and measuring the length of the radicle and plumule. The measured data was statistically analyzed and the effect of the extracts on germination percentage and seedling length was evaluated.  相似文献   

6.
采用原状土芯(intact core)法, 探讨了四川洪雅柳江退耕模式——光皮桦(Betula luminifera)与扁穗牛鞭草(Hemarthria compressa)复合模式(HN)、扁穗牛鞭草草地模式(NC)、柳杉(Cryptameria fortunei)人工林模式(LS)、光皮桦人工林模式(H)细根(包括草根)分解过程中土壤酶动态。结果表明: 1) HN下的土壤脲酶、蔗糖酶、酸性磷酸酶活性较大, LS下的土壤脲酶、酸性磷酸酶活性最小, 显著低于其他模式(p < 0.05)。2) HN、NC和LS下的土壤脲酶与细根(包括草根)分解速率显著相关, HN的蔗糖酶、NC的酸性磷酸酶、LS的多酚氧化酶活性与细根(包括草根)分解速率也呈显著正相关关系(p < 0.05)。3) 除H外, 土壤脲酶活性与细根C/N、纤维素绝对含量呈显著负相关关系(p < 0.05); 除NC外, 多酚氧化酶活性与细根纤维素绝对含量呈显著负相关关系。4)土壤脲酶活性与需氧固氮细菌或与真菌数量显著相关, HN下的土壤蔗糖酶活性与细菌和纤维素分解菌数量呈正相关关系, H与NC下的土壤酸性磷酸酶还分别与细菌和纤维素分解菌数量呈正相关关系(p < 0.05)。以上结果显示: 由光皮桦与扁穗牛鞭草不同生活型植物构成的复合模式有利于土壤酶活性的提高; 土壤脲酶活性高低能够反映这几种退耕模式细根(包括草根)分解速率的快慢, 细根(包括草根)的C/N是影响土壤脲酶活性的一个重要因素; 土壤酶活性与土壤真菌、需氧固氮细菌、纤维分解菌及细菌数量有关。  相似文献   

7.
抑制剂和安全剂对高羊茅根中酶活性和菲代谢的影响   总被引:2,自引:0,他引:2  
龚帅帅  韩进  高彦征  朱雪竹 《生态学报》2011,31(14):4027-4033
以高羊茅(Festuca arundinacea)为供试植物,利用水培体系研究了抑制剂和安全剂对植物根中过氧化物酶(POD)和多酚氧化酶(PPO)活性以及菲代谢的影响。供试安全剂为浓度0.3%的NaCl,抑制剂为浓度2.00 mg/L的Vc。结果表明,2.00 mg/L的Vc作用下,1—16d,高羊茅根的菲含量显著高于对照处理,而供试安全剂对植物根中菲含量的影响不显著。抑制剂作用下植物根部的PPO和POD活性显著降低;16d,抑制剂作用下的植物根部PPO和POD活性为对照组的1/6和1/9,表现出强抑制效应。而安全剂作用下植物根部PPO和POD活性则略高于对照组,但差异不显著(P<0.05)。植物体内酶的初始活性是影响植物代谢PAHs菲的关键因素。抑制剂主要通过调节酶活性来影响根系代谢菲,其对植物根中PPO和POD活性的抑制效率与根部菲代谢抑制效率显著正相关。  相似文献   

8.
对光叶楮扦插生根过程中吲哚乙酸氧化酶(IAAO)、多酚氧化酶(PPO)、过氧化物酶(POD)3种酶进行了动态跟踪分析。结果表明:IAAO活性在扦插初期逐渐上升,第10d上升到高峰,之后下降再上升,第30d达到新高峰,然后迅速下降;前25d POD活性变化规律与IAAO相似,但30d以后活性一直上升;PPO活性在扦插前期缓慢上升,第20d上升到了最高点,此后变化不大。还研究了IAAO、PPO、POD与不定根的发生和发展关系,认为光叶楮扦插生根可分为愈伤组织形成期、根诱导期和根的伸长期3个阶段,愈伤组织形成期3种酶活性都呈上升趋势,根诱导期IAAO和POD的活性达到高峰;而根伸长期IAAO和POD活性下降,PPO活性上升。  相似文献   

9.
Phenology is central to understanding vegetation response to climate change, as well as vegetation effects on plant resources, but most temporal production data is based on shoots, especially those of trees. In contrast, most production in temperate and colder regions is belowground, and is frequently dominated by grasses. We report root and shoot phenology in 7‐year old monocultures of 10 dominant species (five woody species, five grasses) in southern Canada. Woody shoot production was greatest about 8 weeks before the peak of root production, whereas grass shoot maxima preceded root maxima by 2–4 weeks. Over the growing season, woody root, and grass root and shoot production increased significantly with soil temperature. In contrast, the timing of woody shoot production was not related to soil temperature (r=0.01). The duration of root production was significantly greater than that of shoot production (grasses: 22%, woody species: 54%). Woody species produced cooler and moister soils than grasses, but growth forms did not affect seasonal patterns of soil conditions. Although woody shoots are the current benchmark for phenology studies, the other three components examined here (woody plant roots, grass shoots and roots) differed greatly in peak production time, as well as production duration. These results highlight that shoot and root phenology is not coincident, and further, that major plant growth forms differ in their timing of above‐ and belowground production. Thus, considering total plant phenology instead of only tree shoot phenology should provide a better understanding of ecosystem response to climate change.  相似文献   

10.
Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem.  相似文献   

11.
Investigations have been made on the mode of development and various characteristics of seedling of 203 grass species representing over 76 genera and 22 tribes. The correlation between important characteristics and their main formative conditions in distribution area and habitat were discussed. According to the various developmental forms of the embryo axis and root system, the seedlings of grasses may be divided into three main types: Bambusoid, Festucoid and Panicoid. And according to characteristics of seedling leaves and adventitious roots, these types may be further divided into seven subtypes: True Bambusoid, Oryzoid, Arundinoid, Stipoid, Festucoid, Eragrostoid and True Panicoid. in this study, the different types of seedlings have been found to be associated with other characteristics of embryo and adult plant; and on these grounds, the genera of the Gramineae are grouped into seven corresponding subfamilies: Bambusoideae, Oryzoideae, Arundinoideae, Stipoideae, Festucoideae, Eragrostoideae and Panicoideae.  相似文献   

12.
Maize root peroxidases (POD) may also have polyphenol oxidase (PPO) activity as shown by using 3-amino-9-ethylcarbazole or DOPA as hydrogen donor to detect isoenzymes after disc gel electrophoresis. Copper chelators inhibited POD activity, and since PODs are haemoproteins, it can be concluded that copper chelators are not entirely specific for Cu enzymes. This raises the question whether PPO are only Cu enzymes. In POD preparations contaminated by catalase, POD activity could be over-estimated; this could be due to the auto-oxidation of the hydrogen donor or to stimulation of PPO activity by oxygen, as demonstrated with DOPA, dopamine and gallic acid. No correlation was found between the chemical nature of the substrate and the type of peroxidatic or oxidatic oxidation.  相似文献   

13.
Zoospores of the oomycete Saprolegnia ferax release adhesive material from K‐bodies at the onset of attachment to substrates. To understand more fully how K‐bodies function in adhesion, enzyme activity was investigated cytochemically in secondary zoospores. Presence of catalase, a marker enzyme for microbodies, was explored in the diaminobenzidine (DAB) reaction. Although pH 9.2 DAB‐staining characteristic of catalase activity was detected in the granular matrix regions of K‐bodies, reaction controls indicated that the reaction was due to oxidative enzyme activity other than catalase. Because polyphenol oxidase (PPO) is another metal‐containing enzyme capable of oxidizing DAB, activity of this enzyme was tested with a more specific substrate, dihydroxyphenylalanine (DOPA). In the DOPA procedure, reaction product was exclusively localized within K‐bodies, indicating the presence of PPO. Results with three methods of reaction controls (elimination of substrate, addition of a PPO enzyme inhibitor, and heat‐inactivation of enzymes) all supported the presence of PPO in K‐bodies. This study highlights potential roles for K‐body PPO in stabilization of adhesion bodies by: cross‐linking matrix phenolic proteins or glycoproteins as K‐bodies discharge adhesives onto substrates, or polymerizing phenolics protective against microbial attacks of the adhesion pad.  相似文献   

14.
Physical obstructions that reduce space for root growth can profoundly affect plant performance. The aim of this study was to investigate the ability of roots to avoid obstructions and forage for usable space, and to reveal the mechanism involved. Eight grass species from four genera were examined. Each genus included species characteristic of habitats with high and low nutrient availability. The ability to limit root mass and to adjust morphology within substrate containing obstructions in the form of gravel was investigated. A treatment with activated carbon, which adsorbs organic compounds, was used to examine the possible involvement of root exudates in responses to obstructions. Only species characteristic of nutrient-poor habitats restricted placement of root mass in substrate containing obstructions, and this response disappeared in the presence of activated carbon. Root morphological responses to obstructions differed from those shown in response to nutrient-poor conditions or compacted soil. These results suggest that the ability to avoid obstructions is dependent on the sensitivity of roots to their own exudates accumulating in the vicinity of obstructions. This is similar to other behavioural responses in which cues or signals are used to adjust growth before stressful conditions are encountered.  相似文献   

15.
The hypothesis was tested that slow-growing grass species perform a greater proportion of total plant NO3- reduction in their roots than do fast-growing grasses. Eight grass species were selected that differed in maximum relative growth rate (RGR) and net NO3- uptake rate (NNUR). Plants were grown with free access to nutrients in hydroponics under controlled-environment conditions. The site of in vivo NO3- reduction was assessed by combining in vivo NO3- reductase activity (NRA) assays with biomass allocation data, and by analysing the NO3- to amino acid ratio of xylem sap. In vivo NRA of roots and shoots increased significantly with increasing NNUR and RGR. The proportion of total plant NO3- reduction that occurs in roots was found to be independent of RGR and NNUR, with the shoot being the predominant site of NO3- reduction in all species. The theoretical maximum proportion of whole plant nitrogen assimilation that could take place in the roots was calculated using information on root respiration rates, RGR, NNUR, and specific respiratory costs associated with growth, maintenance and ion uptake. The calculated maximum proportion that the roots can contribute to total plant NO3- reduction was 0.37 and 0.23 for the fast-growing Dactylis glomerata L. and the slow-growing Festuca ovina L., respectively. These results indicate that slow-growing grass species perform a similar proportion of total plant NO3- reduction in their roots to that exhibited by fast-growing grasses. Shoots appear to be the predominant site of whole plant NO3- reduction in both fast- and slow-growing grasses when plants are grown with free access to nutrients.  相似文献   

16.
侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制   总被引:2,自引:0,他引:2  
以对番茄早疫病原菌有良好拮抗效果的侧孢芽孢杆菌Bl13为研究对象,采用盆栽试验,通过测定番茄株高、茎粗、番茄早疫病病情指数、叶片内防御酶活性以及根区土壤微生物多样性、微生物群落结构组成等指标,探究侧孢芽孢杆菌Bl13防治番茄早疫病的效果及机制。结果表明: 接种Bl13可显著降低番茄早疫病的病情指数,提高叶片内多酚氧化酶(PPO)、过氧化物酶(POD)等防御酶活性,降低病害对植物地上部分及根系生长发育的影响。同时,改善番茄根区土壤微生物群落结构,使芽孢杆菌属、假单胞菌属等常见有益菌属相对丰度显著提高,油壶菌属、血赤壳属相对丰度显著降低。侧孢芽孢杆菌Bl13可通过提高番茄叶片内防御酶活性并增加根区中有益微生物的数量来增强植物对番茄早疫病的抗性,从而实现对番茄早疫病的防治。  相似文献   

17.
Determining the variation in roots traits within a grass root system is important for understanding the role of fine roots in carbon and nutrient cycling in grassland ecosystems, where the majority of biomass and litter accumulation occur belowground. However, few studies have been conducted in this regard. In this study, the structural and chemical traits of shoot-derived and root-derived roots were examined in three perennial grasses—Cleistogenes squarrosa, Achnatherum sibiricum and Stipa grandis—aiming to explore structural differences, responses to nitrogen and water addition in different types of roots and their correlations with aboveground plant nitrogen. Our results showed significant differences between these two root types, with root-derived roots having higher N concentration, tissue density, and specific root length, but lower C: N and diameter than shoot-derived roots. Trait relationships between root N concentration and tissue density for the two root types differed from that reported among species. These traits in different types of roots were insensitive to resource addition. Furthermore, N concentration in shoot-derived roots was more strongly linked to aboveground plant N concentration than root-derived roots. The results of this study demonstrate structural differences within the root system that may reflect functional heterogeneity in grass roots.  相似文献   

18.
Barnyard grass-induced rice allelopathy and momilactone B   总被引:3,自引:0,他引:3  
Here, we investigated chemical-mediated interaction between crop and weeds. Allelopathic activity of rice seedlings exhibited 5.3-6.3-fold increases when rice and barnyard grass seedlings were grown together, where there may be the competitive interference between rice and barnyard grass for nutrients. Barnyard grass is one of the most noxious weeds in rice cultivation. The momilactone B concentration in rice seedlings incubated with barnyard grass seedlings was 6.9-fold greater than that in rice seedlings incubated independently. Low nutrient growth conditions also increased allelopathic activity and momilactone B concentrations in rice seedlings. However, the increases in the low nutrient-induced allelopathic activity and momilactone B concentration were much lower than those in barnyard grass-induced allelopathic activity and momilactone B concentration. Root exudates of barnyard grass seedlings increased allelopathic activity and momilactone B concentration in rice seedlings at concentrations greater than 30 mg/L of the root exudates, and increasing the exudate concentration increased the activity and momilactone B concentration. Therefore, barnyard grass-induced allelopathic activity of rice seedlings may be caused not only by nutrient competition between two species, but also by components in barnyard grass root exudates. As momilactone B shows strong allelopathic activities, barnyard grass-induced allelopathic activity of rice may be due to the increased concentration of momilactone B in rice seedlings. The present research suggests that rice may respond to the presence of neighboring barnyard grass by sensing the components in barnyard grass root exudates and increasing allelopathic activity by production of elevated concentration of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyard grass, and the induced-allelopathy may provide a competitive advantage for rice through suppression of the growth of barnyard grass.  相似文献   

19.
介质供氮水平对10种禾草幼苗生长及氮效率的影响   总被引:1,自引:1,他引:0  
以10种常用禾草幼苗为材料,通过霍格兰溶液培养法观测了不同供氮水平下禾草的生长及氮效率特性,比较不同禾草的耐介质低氮特征差异.结果表明:介质低氮环境对草地雀麦的株高、根长、根体积、叶面积、地上和地下生物量,以及无芒雀麦的株高、根体积和根长的影响较小;不同介质供氮水平下,草地雀麦能维持相对较高的叶绿素含量,无芒雀麦与苇状羊茅具有较强的氮素吸收和同化能力,从而使草地雀麦、无芒雀麦与苇状羊茅表现出相对较强的耐介质低氮特性.可见,不同禾草草种幼苗对介质供氮水平变化反应存在明显差异,据此可筛选耐介质低氮的禾草草种资源.  相似文献   

20.
Avers , Charlotte J. (U. Miami, Coral Gables, Fla.), and Robert B. Grimm . Comparative enzyme differentiation in grass roots. I. Acid phosphatase. Amer. Jour. Bot. 46(3) : 190-193. Illus. 1959.—There is a correlation between the pattern of acid phosphatase activity and the particular morphogenetic pattern in the root epidermis of festucoid and panicoid grasses. Four festucoid species all showed intensified enzyme activity in trichoblasts and loss of activity in hairless cell initials prior to the maturation of these cells. The 3 panicoid grasses showed no phosphatase-inactive cells during epidermal development. The festucoid epidermis contains alternating long and short cells which differentiate into hairless and hair cells respectively. The panicoid type shows no such cellular pattern and any epidermal cell seems capable of producing a root hair. Treatment of Phleum roots with 10-4 M coumarin caused a foreshortening of the growth zones and a concurrent apical shift in differential acid phosphatase activity. This response was interpreted as further evidence of a direct correlation between the morphogenetic and enzymatic differentiations in the root epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号