首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
V-ATPases的功能及其抑制剂研究进展   总被引:2,自引:0,他引:2  
V-ATPases作为一类酶,在真核细胞中广泛存在。V-ATPases是一个由多个亚基组成的复合物,主要有两个结构域,分别是位于外周的V1结构域和跨膜的V0结构域。V1结构域可以通过水解ATP供能;而V0结构域是质子的通道。它们发挥作用主要是通过水解ATP供能,泵运H+进入囊泡腔中或泵H+出细胞外。V-ATPases定位于细胞器膜及某些特殊细胞的细胞质膜,参与骨吸收、肿瘤的侵袭及耐药等生理及病理过程,因而V-ATPases是治疗骨质疏松、糖尿病及肿瘤等人类疾病的候选分子靶标。目前有许多研究致力于发现新的潜在的特异的V-ATPase抑制剂。  相似文献   

2.
靶向肿瘤酸性微环境的抗肿瘤新策略   总被引:2,自引:0,他引:2  
沈秋瑾  覃文新 《生命科学》2008,20(5):795-799
越来越多的体内体外实验及临床检测都证明了肿瘤酸性微环境对肿瘤的发生、发展和迁移起着重要作用。在肿瘤酸性微环境的重要调节因子中,V型ATP酶(V-ATPases)的作用至关重要。这些蛋白能将离子泵出膜外,在正常细胞和肿瘤细胞中都有着多种功能。本文回顾和总结了该领域的最新研究成果:在异种移植人肿瘤细胞的动物模型中,体内实验显示,采用小分子干扰RNA(siRNA)可抑制V.ATPaseS的功能,加入药物性质子泵抑制剂可显著地抑制人肿瘤细胞的生长。这些结果提示V-ATPases可作为癌症治疗中一个重要的新选择靶标。  相似文献   

3.
Ras相关蛋白Ral家族包括RalA和RalB,参与介导了多种细胞内外信号转导、跨膜运输、细胞形态的维持、转录因子的调节、细胞分化和肿瘤发生与转移等重要的生命活动。Ral家族上游信号通路以及广泛分布的效应器网络对其各种功能起着重要的调控作用,对Ral家族的深入研究将为预防和治疗肿瘤提供了一条新的途径。  相似文献   

4.
侵袭与转移是恶性肿瘤的主要生物学特征之一,并影响肿瘤的疗效及预后.其主要通过肿瘤细胞与血管内皮细胞以及细胞基质之间的相互作用,穿透血管内皮细胞、降解细胞外基质,从而向局部及远处转移.多种信号转导分子参与了肿瘤的侵袭、转移过程.PTEN基因表达的蛋白具有蛋白磷酸酶及脂质磷酸酶双重活性,其作为抑癌基因通过对细胞内多种信号转导通路的调控,参与维持细胞的正常生理活动;负调控肿瘤细胞的生长、细胞周期;诱导肿瘤细胞凋亡;抑制肿瘤细胞的侵袭、浸润及转移.本文就PTEN如何参与抑制肿瘤细胞侵袭及转移做一综述.  相似文献   

5.
核转录因子Nrf2[nuclear factor erythroid 2(NFE2)related factor 2]是细胞内重要的调节因子。通过与Keap1(Kelch-like-ECH associated protein 1)蛋白质的相互作用,Nrf2可以调控下游基因转录,发挥抗氧化应激、维持细胞内稳态的功能,而Nrf2在肿瘤细胞中的表达与肿瘤的发生发展具有重要关系。Nrf2通过调节肿瘤细胞代谢模式调控细胞生长和增殖,近年来成为了细胞生物学和肿瘤生物学领域的研究热点之一。该文介绍了Nrf2对于活性氧分子产生与清除以及多种物质代谢途径的调控作用,着重阐明Nrf2的代谢调节作用对肿瘤细胞生长增殖的影响及其与肿瘤耐药的关系,旨在为今后的临床研究提供更多信息。  相似文献   

6.
Ezrin蛋白是ERM蛋白家族中的一员,最早被发现。人体几乎所有的组织细胞中都有Ezrin蛋白的存在。Ezrin蛋白分子通过磷酸化等方式来激活,暴露其分子上的功能位点,形成具有功能分子结构。亚细胞定位在胞浆中,细胞膜与骨架蛋白之间,通过链接细胞内骨架蛋白与膜蛋白来实现其多项复杂而又重要的功能。近年来发现Ezrin蛋白存在多种功能,包括参与细胞形态学、参与免疫突触的形成,与黏附分子作用进而来调节细胞与细胞或细胞与基质间的黏附、调节细胞运动性等。最重要的是它在多种肿瘤中高表达并促进肿瘤细胞的增殖及转移等活动,参与肿瘤的发生与发展。干扰肿瘤细胞内的Ezrin蛋白表达或抑制其磷酸化后,可以明显抑制肿瘤的转移。所以,Ezrin可能成为将来抑制肿瘤转移研究的潜在靶点。  相似文献   

7.
郑杰 《生命科学》2012,(4):310-315
正常细胞代谢活动所需要的能量主要由线粒体氧化磷酸化产生的ATP提供。与正常细胞不同,肿瘤细胞糖酵解增强,氧化磷酸化功能降低。长期以来,肿瘤细胞的有氧糖酵解被认为是由于线粒体出现不可逆的损伤。最近有不少研究结果对这一观点提出质疑,认为多数肿瘤的线粒体氧化磷酸化功能是完好的,肿瘤有氧糖酵解的改变被认为是其他多种因素(例如癌基因、肿瘤抑制基因、低氧微环境、mtDNA突变等)综合作用的结果。  相似文献   

8.
肿瘤干细胞是具有自我更新能力并能发展成为不同分化程度的肿瘤的一类细胞,它的存在是肿瘤转移和复发的重要原因。最新研究表明,肿瘤干细胞可通过肿瘤细胞的上皮–间充质化(epithelial-mesenchymal transition,EMT)产生。作为研究细胞调控的热点—非编码RNA,通过调控EMT可能会促使肿瘤细胞获得肿瘤干细胞特征。该文主要综述了近年来非编码RNA调控肿瘤细胞EMT以及干性获得的研究进展,以有助于理解肿瘤中非编码RNA的调控机制和功能。  相似文献   

9.
Ezrin是细胞骨架与细胞膜连接的特定蛋白之一,它有助于细胞内摄作用、细胞胞吐作用及跨膜信号发放的途径.研究表明,Ezrin在不同肿瘤组织中表达异常,推测它可能参与肿瘤的侵袭转移,其通过改变肿瘤细胞极性及细胞运动、调节肿瘤细胞间黏附及细胞与细胞外基质黏附、参与肿瘤细胞内信号转导而影响恶性肿瘤转移.本文主要介绍了Ezrin生物学特性、与CD44相互关系以及目前在肿瘤研究中的现状.  相似文献   

10.
IGFBP-2作为IGFBP超家族最受关注的分子之一,在多种肿瘤中都发现其表达增加,通过调控肿瘤细胞的增殖、转移、侵袭以及内皮募集和血管生成等多种过程,在肿瘤的发生与发展中起着重要作用。IGFBP-2的功能复杂多样,受细胞类型与细胞微环境的影响,其表达含量与肿瘤进程关系紧密,并且与抑癌基因PTEN的表达呈反相关。本文综述了IGFBP-2蛋白结构、功能、调控及其与肿瘤关系的研究进展,为将IGFBP-2作为新的肿瘤治疗靶点提供依据。  相似文献   

11.
Structure and regulation of the vacuolar ATPases   总被引:2,自引:0,他引:2  
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c'), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.  相似文献   

12.
Function, structure and regulation of the vacuolar (H+)-ATPases   总被引:2,自引:0,他引:2  
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V1) responsible for hydrolysis of ATP and an integral domain (V0) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V1 and V0 domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.  相似文献   

13.
The vacuolar H+ ATPases (V-ATPases) are ATP-driven proton pumps that transport protons across both intracellular and plasma membranes. Previous studies have implicated V-ATPases in the invasiveness of various cancer cell lines. In this study, we evaluated the role of V-ATPases in the invasiveness of two closely matched human breast cancer lines. MCF10a cells are a non-invasive, immortalized breast epithelial cell line, and MCF10CA1a cells are a highly invasive, H-Ras-transformed derivative of MCF10a cells selected for their metastatic potential. Using an in vitro Matrigel assay, MCF10CA1a cells showed a much higher invasion than the parental MCF10a cells. Moreover, this increased invasion was completely sensitive to the specific V-ATPase inhibitor concanamycin. MCF10CA1a cells expressed much higher levels of both a1 and a3 subunit isoforms relative to the parental line. Isoforms of subunit a are responsible for subcellular localization of V-ATPases, with a3 and a4 targeting V-ATPases to the plasma membrane of specialized cells. Knockdown of either a3 alone or a3 and a4 together using isoform-specific siRNAs inhibited invasion by MCF10CA1a cells. Importantly, overexpression of a3 but not the other a subunit isoforms greatly increased the invasiveness of the parental MCF10a cells. Similarly, overexpression of a3 significantly increased expression of V-ATPases at the plasma membrane. These studies suggest that breast tumor cells employ particular a subunit isoforms to target V-ATPases to the plasma membrane, where they function in tumor cell invasion.  相似文献   

14.
The vacuolar (H+)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A–H) of molecular weight 70–13 kDa which is responsible for ATP hydrolysis. The V0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a–d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V1 and V0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.  相似文献   

15.
Plasmalemmal vacuolar-type H+-ATPase in cancer biology   总被引:6,自引:0,他引:6  
Vacuolar-type H+-adenosine triphosphatase (V-ATPase) is one of the most fundamental enzymes in nature. V-ATPases are responsible for the regulation of proton concentration in the intracellular acidic compartments. It has similar structure with the mitochondrial F0F1-ATP synthase (F-ATPase). The V-ATPases are composed of multiple subunits and have various physiological functions, including membrane and organelle protein sorting, neurotransmitter uptake, cellular degradative processes, and cytosolic pH regulation. The V-ATPases have been involved in multidrug resistance. Recently, plasma membrane V-ATPases have been involved in regulation of extracellular acidity, essential for cellular invasiveness and proliferation in tumor metastasis. The current knowledge regarding the structure and function of V-ATPase and its role in cancer biology is discussed. F in F0F1 ATPase is the coupling energy factor.  相似文献   

16.
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.  相似文献   

17.
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.  相似文献   

18.
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.  相似文献   

19.
The V-ATPases are ATP-dependent proton pumps present in both intracellular compartments and the plasma membrane. They function in such processes as membrane traffic, protein degradation, renal acidification, bone resorption and tumor metastasis. The V-ATPases are composed of a peripheral V1 domain responsible for ATP hydrolysis and an integral V0 domain that carries out proton transport. Our recent work has focused on structural analysis of the V-ATPase complex using both cysteine-mediated cross-linking and electron microscopy. For cross-linking studies, unique cysteine residues were introduced into structurally defined sites within the B and C subunits and used as points of attachment for the photoactivated cross-linking reagent MBP. Disulfide mediated cross-linking has also been used to define helical contact surfaces between subunits within the integral V0 domain. With respect to regulation of V-ATPase activity, we have investigated the role that intracellular environment, luminal pH and a unique domain of the catalytic A subunit play in controlling reversible dissociation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号