首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
海洋细菌生态学的若干前沿课题及其研究新进展   总被引:6,自引:0,他引:6  
海洋细菌在海洋生态系统中的重要作用随着微食物环的提出被深入认识和充分肯定。本文概述了海洋细菌在微食物环中的重要生态作用及微食物环的研究进展,海洋细菌在碳的生物地球化学循环中的重要性,海洋细菌的活性及其群落结构与功能,分析了藻际环境特性和藻际微生物在赤潮多发海域的生态作用,提出了我国海洋细菌生态学研究的若干新思考与新任务,强调了基于"以菌治藻"的新理念,开展针对于赤潮灾害防除的"微食物环-赤潮-关键微生物菌群"耦合互作这一重要科学问题研究的必要性及紧迫性。  相似文献   

2.
土壤微食物网结构与生态功能   总被引:5,自引:0,他引:5  
土壤微食物网是碎屑食物网中与土壤生态过程密切相关的一部分,通过取食资源基质直接或间接地参与养分循环过程,影响陆地生态系统功能.本文从土壤微食物网的组成、结构和生态功能等方面综述了近年来土壤微食物网的研究进展.通过对土壤微食物网的能量通道及营养级联效应的介绍,阐述了土壤微食物网在碳(C)、氮(N)转化、凋落物分解和植物生长等方面的重要作用.针对目前的研究现状,提出未来土壤生态学研究应与高通量测序及稳定同位素技术相结合;通过构建模型进一步加强对土壤食物网结构和功能的研究,从而深入揭示地下生态过程及其对地上植物生长的反馈作用机理.  相似文献   

3.
李凤超  曹卫荣  康现江 《生态学报》2009,29(9):5023-5029
随着对水生态系统结构与功能的深入研究,自由生活的异养鞭毛虫在水生态系统中的作用成为当前生态学领域的热点之一.已有的研究结果表明,异养鞭毛虫物种丰富,摄食方式多样,周转迅速,是微食物环的重要成分,在水生态系统中起着十分重要的作用.异养鞭毛虫物种多样性及生态学方面的系统研究将有助于对水生态系统结构、功能和过程深入了解.综述了异养鞭毛虫多样性、群落结构、摄食生态学以及在氮、磷循环中的作用,分析了其在生态系统中的功能.  相似文献   

4.
作为一种新兴的污染物, 微塑料在水和土壤生态系统中普遍存在, 并成为了近年来环境污染研究的热点之一。目前研究主要集中在海洋和淡水生态系统中微塑料的检测、赋存、表征和毒理学等方面, 但与水生态系统相比, 对土壤生态系统中微塑料的生态效应的了解还很有限。为此, 论文综述了土壤环境中微塑料的来源、丰度及分布特征、微塑料对土壤结构和生物的负面影响、微塑料的迁移机制以及食物链中的营养转移等方面的研究进展, 以揭示土壤环境中微塑料造成的潜在生态和人类健康风险, 最后提出未来微塑料污染及其土壤生态毒性的研究方向。  相似文献   

5.
微生态系统研究在生态学中已有相当长的历史,具有微小、简化、方便、准确地模拟预定设计结果的特点。近年来随着生态学的发展,利用微生态系统研究生态学的原理与方法正成为一种被广泛采用的手段。本文初步探讨了微生态系统研究的最新进展,并对微生态系统在现代生态学中的地位与作用作了分析。  相似文献   

6.
微生态系统研究动态   总被引:1,自引:0,他引:1  
微生态系统研究在生态学中已有相当长的历史 ,具有微小、简化、方便、准确地模拟预定设计结果的特点。近年来随着生态学的发展 ,利用微生态系统研究生态学的原理与方法正成为一种被广泛采用的手段。本文初步探讨了微生态系统研究的最新进展 ,并对微生态系统在现代生态学中的地位与作用作了分析  相似文献   

7.
海洋微塑料污染的生态效应研究进展   总被引:9,自引:0,他引:9  
刘强  徐旭丹  黄伟  徐晓群  寿鹿  曾江宁 《生态学报》2017,37(22):7397-7409
海洋微塑料污染已成为全球性环境问题。微塑料粒径小,易与海洋生物发生相互作用,可通过多种途径进入海洋生物体内,并在其组织和器官中蓄积和转移,对机体产生毒害。微塑料可沿食物链进行传递,威胁海洋生态系统的健康与稳定。因此,海洋生物与微塑料的相互作用以及海洋微塑料污染的生态效应成为当前研究的热点。综述微塑料的生物附着、生物摄入、对海洋生物的毒性效应及其与化学污染物的复合毒性效应研究的基础上,提出未来微塑料生态效应研究应重点关注我国海洋环境中微塑料的污染现状及生物摄入状况、微塑料的生物效应及其毒理学机制研究、微塑料与其他污染物的复合效应、以及微塑料在海洋生态系统中的作用及其生物地球化学行为等。  相似文献   

8.
雷新明  黄晖  黄良民 《生态科学》2012,31(5):585-590
珊瑚藻是海洋红藻中的大型钙化藻类,全球分布623种,中国现有记录共77种。随着生态科学研究的广泛展开,人们越来越认识到,珊瑚藻在海洋生态系统中,尤其在维持珊瑚礁生态系统的生物多样性及生态功能中发挥着重要作用。目前,科研人员对有关珊瑚藻的初级生产力、钙化作用以及在诱导底栖无脊椎动物幼虫的附着与变态等方面已有多方面的研究和探索。然而,有关珊瑚藻生态功能的深层次机理问题有待进一步深入研究。文章着重围绕目前珊瑚藻研究中的一些热点问题,从近年来珊瑚藻在珊瑚礁生态系统中的生态功能方面的研究概况进行综述,以期加深人们对珊瑚藻的认识,并促进对珊瑚藻生态功能的进一步深入研究。  相似文献   

9.
海洋生态学,按经典生态学定义被解释为研究海洋生物与其环境之间相互关系的科学。它起步晚,是生态学的一个分支。近年来,随着食物和环境问题的突出,这门学科正面临重大理论和实践问题的挑战,并将进入一个迅速发展的新时期。预计到2000年,在应用研究方面将取得几项(有关食物资源开发和环境保护的海洋生态工艺和工程)重大突破。在理论研究方面将获得各种生态过程作用机理和大尺度观测数据。到2020年应用海洋生态学将得到蓬勃发展,海洋生态过程的规律性和大洋生态系统在自然平衡中的地位与作用问题将得到基本阐明。那时的海洋生态学将形成为一门富有自身特点的完整学科,既包括协调人与海洋支持系  相似文献   

10.
何剑峰 《生态学报》2004,24(4):750-754
近年来随着北极地区的开放和全球变化对北极地区生态环境和海冰现存量的影响日益显现,北极浮冰生态学研究得到了广泛的重视和实质性的进展.最新研究结果显示,浮冰本身包含了一个复杂的生物群落,高纬度浮冰生物群落的初级产量远高于原先的估算,浮冰生物群落在北极海洋生态系统中的作用被进一步确认.但由于对浮冰生物群落的研究受后勤保障条件的制约,目前尚有大量科学问题有待今后进一步深入研究,预期我国科学家将在其中做出贡献.  相似文献   

11.
The Arctic is undergoing unprecedented environmental change. Rapid warming, decline in sea ice extent, increase in riverine input, ocean acidification and changes in primary productivity are creating a crucible for multiple concurrent environmental stressors, with unknown consequences for the entire arctic ecosystem. Here, we synthesized 30 years of data on the stable carbon isotope (δ13C) signatures in dissolved inorganic carbon (δ13C‐DIC; 1977–2014), marine and riverine particulate organic carbon (δ13C‐POC; 1986–2013) and tissues of marine mammals in the Arctic. δ13C values in consumers can change as a result of environmentally driven variation in the δ13C values at the base of the food web or alteration in the trophic structure, thus providing a method to assess the sensitivity of food webs to environmental change. Our synthesis reveals a spatially heterogeneous and temporally evolving δ13C baseline, with spatial gradients in the δ13C‐POC values between arctic shelves and arctic basins likely driven by differences in productivity and riverine and coastal influence. We report a decline in δ13C‐DIC values (?0.011‰ per year) in the Arctic, reflecting increasing anthropogenic carbon dioxide (CO2) in the Arctic Ocean (i.e. Suess effect), which is larger than predicted. The larger decline in δ13C‐POC values and δ13C in arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence of a changing arctic environment. Combining the influence of changing sea ice conditions and isotopic fractionation by phytoplankton, we explain the decadal decline in δ13C‐POC values in the Arctic Ocean and partially explain the δ13C values in marine mammals with consideration of time‐varying integration of δ13C values. The response of the arctic ecosystem to ongoing environmental change is stronger than we would predict theoretically, which has tremendous implications for the study of food webs in the rapidly changing Arctic Ocean.  相似文献   

12.
Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.  相似文献   

13.
The Barents Sea is a transition zone between North Atlantic and Arctic waters, so its marine ecosystem is highly sensitive to climate dynamics. Understanding of marine biota response to climate changes is necessary to assess the environmental stability and the state of marketable biological resources. These processes are analyzed using a database from the Murmansk Marine Biological Institute which holds oceanographic and hydrobiological data sets collected for more than 100?years along the meridional Kola Transect in the Barents Sea. The data demonstrate high variability in thermal state of the upper layer of the Barents Sea, which is regulated by varying the inflow of Atlantic water and by regional climate. At irregular intervals, cold periods with extended seasonal ice cover are followed by warm periods. The most recent warm period started in the late 1980s and reached its maximum from 2001 to 2006. These cyclic changes in hydrologic regime across the twentieth century and first decade of the twenty-first century are reflected (with a specific lag of 1–5?years) by changes in species composition, as well as abundance and distribution of boreal and arctic groups of macrozoobenthos and fish fauna. For instance, cod and cod fisheries in the Barents Sea are closely linked to the marine climate. Furthermore, Kamchatka crab stock recruitment benefited from the warm climate of 1989 and 1990. In general, studies in this region have shown that climatic dynamics may be assessed using biological indices of abundance, biomass, and migration of marine organisms, including commercial species.  相似文献   

14.
The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate‐origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989. E. huxleyi's blooms keep pace with the changing climate of the Barents Sea, namely ocean warming and shifts in the position of the Polar Front, resulting in an exceptionally rapid range shift compared to what is generally detected in the marine realm. We propose that as the Eurasian Basin of the Arctic Ocean further atlantifies and ocean temperatures continue to rise, E. huxleyi and other temperate‐origin phytoplankton could well become resident bloom formers in the Arctic Ocean.  相似文献   

15.
Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity "hotspots"; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian).  相似文献   

16.
We analyzed microbial eukaryote diversity in perennially cold arctic marine waters by using 18S rRNA gene clone libraries. Samples were collected during concurrent oceanographic missions to opposite sides of the Arctic Ocean Basin and encompassed five distinct water masses. Two deep water Arctic Ocean sites and the convergence of the Greenland, Norwegian, and Barents Seas were sampled from 28 August to 2 September 2002. An additional sample was obtained from the Beaufort Sea (Canada) in early October 2002. The ribotypes were diverse, with different communities among sites and between the upper mixed layer and just below the halocline. Eukaryotes from the remote Canada Basin contained new phylotypes belonging to the radiolarian orders Acantharea, Polycystinea, and Taxopodida. A novel group within the photosynthetic stramenopiles was also identified. One sample closest to the interior of the Canada Basin yielded only four major taxa, and all but two of the sequences recovered belonged to the polar diatom Fragilariopsis and a radiolarian. Overall, 42% of the sequences were <98% similar to any sequences in GenBank. Moreover, 15% of these were <95% similar to previously recovered sequences, which is indicative of endemic or undersampled taxa in the North Polar environment. The cold, stable Arctic Ocean is a threatened environment, and climate change could result in significant loss of global microbial biodiversity.  相似文献   

17.
Greenland shark Somniosus microcephalus is a potentially important yet poorly studied cold-water species inhabiting the North Atlantic and Arctic Oceans. Broad-scale changes in the Arctic ecosystem as a consequence of climate change have led to increased attention on trophic dynamics and the role of potential apex predators such as S. microcephalus in the structure of Arctic marine food webs. Although Nordic and Inuit populations have caught S. microcephalus for centuries, the species is of limited commercial interest among modern industrial fisheries. Here, the limited historical information available on S. microcephalus occurrence and ecology is reviewed and new catch, biological and life-history information from the Arctic and North Atlantic Ocean region is provided. Given the considerable by-catch rates in high North Atlantic Ocean latitudes it is suggested that S. microcephalus is an abundant predator that plays an important, yet unrecognized, role in Arctic marine ecosystems. Slow growth and large pup sizes, however, may make S. microcephalus vulnerable to increased fishing pressure in a warming Arctic environment.  相似文献   

18.
We analyzed microbial eukaryote diversity in perennially cold arctic marine waters by using 18S rRNA gene clone libraries. Samples were collected during concurrent oceanographic missions to opposite sides of the Arctic Ocean Basin and encompassed five distinct water masses. Two deep water Arctic Ocean sites and the convergence of the Greenland, Norwegian, and Barents Seas were sampled from 28 August to 2 September 2002. An additional sample was obtained from the Beaufort Sea (Canada) in early October 2002. The ribotypes were diverse, with different communities among sites and between the upper mixed layer and just below the halocline. Eukaryotes from the remote Canada Basin contained new phylotypes belonging to the radiolarian orders Acantharea, Polycystinea, and Taxopodida. A novel group within the photosynthetic stramenopiles was also identified. One sample closest to the interior of the Canada Basin yielded only four major taxa, and all but two of the sequences recovered belonged to the polar diatom Fragilariopsis and a radiolarian. Overall, 42% of the sequences were <98% similar to any sequences in GenBank. Moreover, 15% of these were <95% similar to previously recovered sequences, which is indicative of endemic or undersampled taxa in the North Polar environment. The cold, stable Arctic Ocean is a threatened environment, and climate change could result in significant loss of global microbial biodiversity.  相似文献   

19.
During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号