首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Atomic force microscope was applied to investigate the effect of extrinsic phospholipid on the structure of rabbit skeletal muscle ryanodine receptor/calcium release channel (RyR1). In addition, in the presence of extrinsic phospholipid, the height and elasticity of the RyR1s in different functional states were also measured. The results indicate: (i) most of the RyR1s showed a normal structure only in the presence of extrinsic phospholipid; (ii) treatment of the RyR1s with AMP and Ca2+ together could increase their Young’s Modulus but not change their apparent height; (iii) no detectable change in either height or Young’s Modulus of the RyR1s appeared, if the RyR1s were treated with other activators or inhibitors.  相似文献   

2.
Ryanodine receptors (RyRs) are large conductance intracellular channels controlling intracellular calcium homeostasis in myocytes, neurons, and other cell types. Loss of RyR’s constitutive cytoplasmic partner FKBP results in channel sensitization, dominant subconductance states, and increased cytoplasmic Ca2+. FKBP12 binds to RyR1’s cytoplasmic assembly 130?Å away from the ion gate at four equivalent sites in the RyR1 tetramer. To understand how FKBP12 binding alters RyR1’s channel properties, we studied the 3D structure of RyR1 alone in the closed conformation in the context of the open and closed conformations of FKBP12-bound RyR1. We analyzed the metrics of conformational changes of existing structures, the structure of the ion gate, and carried out multivariate statistical analysis of thousands of individual cryoEM RyR1 particles. We find that under closed state conditions, in the presence of FKBP12, the cytoplasmic domain of RyR1 adopts an upward conformation, whereas absence of FKBP12 results in a relaxed conformation, while the ion gate remains closed. The relaxed conformation is intermediate between the RyR1-FKBP12 complex closed (upward) and open (downward) conformations. The closed-relaxed conformation of RyR1 appears to be consistent with a lower energy barrier separating the closed and open states of RyR1-FKBP12, and suggests that FKBP12 plays an important role by restricting conformations within RyR1’s conformational landscape.  相似文献   

3.
Isoform 2 of the ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. In the present study, two kinds of RyR2 cDNA were constructed, one encoding the wild type mouse RyR2 (RyR2(wt)) and the other encoding modified RyR2, into which was inserted a cDNA encoding green fluorescent protein (GFP). GFP was inserted into the divergent region 1 (DR1) of RyR2, after the Asp-4365 (RyR2(D4365-GFP)). HEK293 cells expressing both RyR2(wt) and RyR2(D4365-GFP) cDNAs showed caffeine- and ryanodine-sensitive calcium release, demonstrating that both wild type and modified RyR2s form functional calcium release channels. Cells expressing the fusion protein, RyR2(D4365-GFP), were readily identified by their fluorescence due to the presence of GFP, indicating that the inserted GFP folded properly. Both expressed RyR2s were purified from cell lysates in a single step by affinity chromatography using a GST-FKBP12.6 as the affinity ligand. Cryoelectron microscopy of purified RyR2s showed structurally intact receptors, and three-dimensional reconstructions were obtained by single particle image processing. The three-dimensional reconstruction of RyR2(wt) appeared very similar to that of the native RyR2 purified from dog heart. The location of the inserted GFP, and consequently of DR1, was mapped on the three-dimensional structure of RyR2 to one of the subunit's characteristic domains, domain 3, also known as the "handle" domain. This study describes the first internal fusion of a protein into a ryanodine receptor, and it demonstrates the potential of this technology for localizing functional and structural domains on the three-dimensional structure of RyR.  相似文献   

4.
Wenjun Zheng  Han Wen 《Proteins》2020,88(11):1528-1539
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+-activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+-modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+, Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+.  相似文献   

5.
Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor.  相似文献   

6.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

7.
Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type-specific manner in fish skeletal muscle (11). In this study, we compare [(3)H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [(3)H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (P(o)) of RyR1-slow was threefold less than the maximum P(o) of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest P(o) of all the RyR channels and displayed less inhibition at millimolar Ca(2+). The addition of 5 mM Mg-ATP or 2.5 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the channels increased the P(o) and [(3)H]ryanodine binding of both RyR1s but also caused a shift in the Ca(2+) dependency curve of RyR1-slow such that Ca(2+)-dependent inactivation was attenuated. [(3)H]ryanodine binding data also showed that Mg(2+)-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca(2+) is regulated in these muscle types.  相似文献   

8.
The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln(4020) and Lys(4021)) that, when mutated to their RyR3 counterparts (Leu(3873) and Gln(3874)), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca(2+) transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln(4020)-Lys(4021) dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.  相似文献   

9.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).  相似文献   

10.
Hilary Ann  Price 《Journal of Zoology》1981,194(2):245-255
Mytilus edulis attaches to the substratum by means of a proteinaceous byssus complex. This consists of three portions: a root, embedded in the pedal tissues, a stem, continuous with the root but external to the body and a number of byssus threads attached proximally to the stem and distally to the substratum via adhesive discs. Byssus strength varies seasonally on the shore, in response to changes in wave action (Price, in press). As a decline in byssal attachment strength implies a decline in strength of the constituent threads, a study was undertaken to establish the extent to which byssus thread strength is determined by age. The ultimate tensile stress, ultimate tensile strain and Young's Modulus were measured in threads of known age and length and a stepped regression performed on the results. It was found that age and length correlate significantly with tensile stress and Young's Modulus. Length is a less important influence than age on tensile stress but has a greater effect than age on Young's Modulus. Tensile strain is independent of both length and age.  相似文献   

11.
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.  相似文献   

12.
Chlorantraniliprobe (Chlo), a potent insecticide, demolishes intracellular Ca2+ homeostasis of insects by inducing uncontrolled Ca2+ release through ryanodine receptors (RyRs). Chlo is lethal to insects but has low toxicity to mammals. In this study, we investigated the effects of Chlo on RyR1 from mammalian skeletal muscle. Ca2+ release assay indicated that Chlo at high concentrations promoted Ca2+ release from sarcoplasmic reticulum through RyR1 channels. Single channel recording of purified RyR1 showed that Chlo activated RyR1 channel, increased channel open probability Po, reduced channel mean close time Tc, but did not change the channel mean open time To, suggesting that Chlo destabilized the closed RyR1 channel, rendered the channel easy to open. The dissociation constant Kd values of Chlo for RyR1 were of micromolar level, approximately 100-fold larger than that for insect RyR. The Kd values were smaller for open states than for closed/blocked states of the RyR1 channel. The maximal binding capacity Bmax did not change in the presence of either channel activators or inhibitors/blockers. Our results demonstrate that the insecticide Chlo is a weak activator of mammalian RyR1. It can interact with mammalian RyR1 and activate RyR1 channel but with much lower affinity compared with insect RyR; Chlo has a binding site distinct from all known RyR channel modulators and represents a novel type of RyR channel modulator. Our data provide biochemical and pharmacological insights into its high specificity to insect RyR and high selectivity of poisoning to insects over mammals.  相似文献   

13.
Hu XF  Liang X  Chen KY  Xie H  Xu Y  Zhu PH  Hu J 《Biophysical journal》2005,89(3):1692-1699
The calcium release channels/ryanodine receptors (RyRs) usually form two-dimensional regular lattices in the endoplasmic/sarcoplasmic reticulum membranes. However, the function and modulation of the interaction between neighboring RyRs are still unknown. Here, with an in vitro aqueous system, we demonstrate that the interaction between RyRs isolated from skeletal muscle (RyR1s) is modulated by their functional states by using photon correlation spectroscopy and [(3)H]ryanodine binding assay. High level of oligomerization is observed for resting closed RyR1s with nanomolar Ca(2+) in solution. Activation of RyR1s by micromolar Ca(2+) or/and millimolar AMP leads to the de-oligomerization of RyR1s. The oligomerization of RyR1s remains at high level when RyR1s are stabilized at closed state by Mg(2+). The modulation of RyR1-RyR1 interaction by the functional state is also observed under near-physiological conditions, suggesting that the interaction between arrayed RyR1s would be dynamically modulated during excitation-contraction coupling. These findings provide exciting new information to understand the function and operating mechanism of RyR arrays.  相似文献   

14.
Release of Ca2+ from the sarcoplasmic reticulum (SR) drives contractile function of cardiac myocytes. Luminal Ca2+ regulation of SR Ca2+ release is fundamental not only in physiology but also in physiopathology because abnormal luminal Ca2+ regulation is known to lead to arrhythmias, catecholaminergic polymorphic ventricular tachycardia (CPVT), and/or sudden cardiac arrest, as inferred from animal model studies. Luminal Ca2+ regulates ryanodine receptor (RyR)2-mediated SR Ca2+ release through mechanisms localized inside the SR; one of these involves luminal Ca2+ interacting with calsequestrin (CASQ), triadin, and/or junctin to regulate RyR2 function.CASQ2-RyR2 regulation was examined at the single RyR2 channel level. Single RyR2s were incorporated into planar lipid bilayers by the fusion of native SR vesicles isolated from either wild-type (WT), CASQ2 knockout (KO), or R33Q-CASQ2 knock-in (KI) mice. KO and KI mice have CPVT-like phenotypes. We show that CASQ2(WT) action on RyR2 function (either activation or inhibition) was strongly influenced by the presence of cytosolic MgATP. Function of the reconstituted CASQ2(WT)–RyR2 complex was unaffected by changes in luminal free [Ca2+] (from 0.1 to 1 mM). The inhibition exerted by CASQ2(WT) association with the RyR2 determined a reduction in cytosolic Ca2+ activation sensitivity. RyR2s from KO mice were significantly more sensitive to cytosolic Ca2+ activation and had significantly longer mean open times than RyR2s from WT mice. Sensitivity of RyR2s from KI mice was in between that of RyR2 channels from KO and WT mice. Enhanced cytosolic RyR2 Ca2+ sensitivity and longer RyR2 open times likely explain the CPVT-like phenotype of both KO and KI mice.  相似文献   

15.
To test the hypothesis that interactions among several putative domains of the ryanodine receptor (RyR) are involved in the regulation of its Ca(2+) release channel, we synthesized several peptides corresponding to selected NH(2)-terminal regions of the RyR. We then examined their effects on ryanodine binding and Ca(2+) release activities of the sarcoplasmic reticulum isolated from skeletal and cardiac muscle. Peptides 1-2s, 1-2c, and 1 enhanced ryanodine binding to cardiac RyR and induced a rapid Ca(2+) release from cardiac SR in a dose-dependent manner. The order of the potency for the activation of the Ca(2+) release channel was 1-2c > 1 > 1-2s. Interestingly, these peptides produced significant activation of the cardiac RyR at near zero or subactivating [Ca(2+)], indicating that the peptides enhanced the Ca(2+) sensitivity of the channel. Peptides 1-2c, 1-2s, and 1 had virtually no effect on skeletal RyR, although occasional and variable extents of activation were observed in ryanodine binding assays performed at 36 degrees C. Peptide 3 affected neither cardiac nor skeletal RyR. We propose that domains 1 and 1-2 of the RyR, to which these activating peptides correspond, would interact with one or more other domains within the RyR (including presumably the Ca(2+)-binding domain) to regulate the Ca(2+) channel.  相似文献   

16.
Skeletal muscle excitation-contraction coupling involves activation of homotetrameric ryanodine receptor ion channels (RyR1s), resulting in the rapid release of Ca(2+) from the sarcoplasmic reticulum. Previous work has shown that Ca(2+) release is impaired by mutations in RyR1 linked to Central Core Disease and Multiple Minicore Disease. We studied the consequences of these mutations on RyR1 function, following their expression in human embryonic kidney 293 cells and incorporation in lipid bilayers. RyR1-G4898E, -G4898R, and -DeltaV4926/I4927 mutants in the C-terminal pore region of RyR1 and N-terminal RyR1-R110W/L486V mutant all showed negligible Ca(2+) permeation and loss of Ca(2+)-dependent channel activity but maintained reduced K(+) conductances. Co-expression of wild type and mutant RyR1s resulted in Ca(2+)-dependent channel activities that exhibited intermediate Ca(2+) selectivities compared with K(+), which suggested the presence of tetrameric RyR1 complexes composed of wild type and mutant subunits. The number of wild-type subunits to maintain a functional heterotetrameric channel differed among the four RyR1 mutants. The results indicate that homozygous RyR1 mutations associated with core myopathies abolish or greatly reduce sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling. They further suggest that in individuals, expressing wild type and mutant alleles, a substantial portion of RyR1 channels is able to release Ca(2+) from sarcoplasmic reticulum.  相似文献   

17.
Activation of ryanodine receptor (RyR) from skeletal muscle sarcoplasmic reticulum by adenosine and adenosine's metabolites was studied. The purines tested increased the [3H]-ryanodine binding as follows: xanthine>adenosine>adenine >inosine>/=uric acid>hypoxanthine. The enhanced [3H]-ryanodine binding did not involve change in the RyR-Ca(2+) sensitivity and was due mainly to lower values in the affinity constant (K(d)) that corresponded with an increase in the association rate constant (K(+1)). [3H]-ryanodine maximum binding (B(max)) was much less affected. Adenosine and inosine effects were dependent on the presence beta-glycosidic bond within the ribose ring, since the combination of adenine or hypoxanthine with ribose was not able to emulate the nucleosides' original activation. Competition experiments with AMP-PCP, a non-hydrolyzable analogue of ATP, evidenced a nucleotide's inhibitory influence on the adenosine and xanthine activation of the RyR. As a result of a Quantitative Structure-Activity Relationship (QSAR) study, we found a significant correlation between the modulation by adenosine and its metabolites on RyR activity and the components of their calculated dipole moment vector. Our results show that the ribose moiety and the dipole moment vector could be factors that make possible the modulation of the RyR activity by adenosine and its metabolites.  相似文献   

18.
Alternative splicing of ASI residues (Ala3481–Gln3485) in the skeletal muscle ryanodine receptor (RyR1) is developmentally regulated: the residues are present in adult ASI(+)RyR1, but absent in the juvenile ASI(?)RyR1 which is over-expressed in adult myotonic dystrophy type 1 (DM1). Although this splicing switch may influence RyR1 function in developing muscle and DM1, little is known about the properties of the splice variants. We examined excitation-contraction (EC) coupling and the structure and interactions of the ASI domain (Thr3471–Gly3500) in the splice variants. Depolarisation-dependent Ca2+ release was enhanced by >50% in myotubes expressing ASI(?)RyR1 compared with ASI(+)RyR1, although DHPR L-type currents and SR Ca2+ content were unaltered, while ASI(?)RyR1 channel function was actually depressed. The effect on EC coupling did not depend on changes in ASI domain secondary structure. Probing RyR1 function with peptides possessing the ASI domain sequence indicated that the domain contributes to an inhibitory module in RyR1. The action of the peptide depended on a sequence of basic residues and their alignment in an α-helix adjacent to the ASI splice site. This is the first evidence that the ASI residues contribute to an inhibitory module in RyR1 that influences EC coupling. Implications for development and DM1 are discussed.  相似文献   

19.
《Biophysical journal》2020,118(5):1090-1100
Calmodulin (CaM) is proposed to modulate activity of the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel (ryanodine receptor, RyR1 isoform) via a mechanism dependent on the conformation of RyR1-bound CaM. However, the correlation between CaM structure and functional regulation of RyR in physiologically relevant conditions is largely unknown. Here, we have used time-resolved fluorescence resonance energy transfer (TR-FRET) to study structural changes in CaM that may play a role in the regulation of RyR1. We covalently labeled each lobe of CaM (N and C) with fluorescent probes and used intramolecular TR-FRET to assess interlobe distances when CaM is bound to RyR1 in SR membranes, purified RyR1, or a peptide corresponding to the CaM-binding domain of RyR (RyRp). TR-FRET resolved an equilibrium between two distinct structural states (conformations) of CaM, each characterized by an interlobe distance and Gaussian distribution width (disorder). In isolated CaM, at low Ca2+, the two conformations of CaM are resolved, centered at 5 nm (closed) and 7 nm (open). At high Ca2+, the equilibrium shifts to favor the open conformation. In the presence of RyRp at high Ca2+, the closed conformation shifts to a more compact conformation and is the major component. When CaM is bound to full-length RyR1, either purified or in SR membranes, strikingly different results were obtained: 1) the two conformations are resolved and more ordered, 2) the open state is the major component, and 3) Ca2+ stabilized the closed conformation by a factor of two. We conclude that the Ca2+-dependent structural distribution of CaM bound to RyR1 is distinct from that of CaM bound to RyRp. We propose that the function of RyR1 is tuned to the Ca2+-dependent structural dynamics of bound CaM.  相似文献   

20.
The properties of ryanodine receptors (RyRs) from rat dorsal root ganglia (DRGs) have been studied. The density of RyRs (Bmax) determined by [3H]ryanodine binding was 63 fmol/mg protein with a dissociation constant (Kd) of 1.5 nM. [3H]Ryanodine binding increased with caffeine, decreased with ruthenium red and tetracaine, and was insensitive to millimolar concentrations of Mg2+ or Ca2+. DRG RyRs reconstituted in planar lipid bilayers were Ca2+-dependent and displayed the classical long-lived subconductance state in response to ryanodine; however, unlike cardiac and skeletal RyRs, they lacked Ca2+-dependent inactivation. Antibodies against RyR3, but not against RyR1 or RyR2, detected DRG RyRs. Thus, DRG RyRs are immunologically related to RyR3, but their lack of divalent cation inhibition is unique among RyR subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号