首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.  相似文献   

2.
ABT-263 and its structural analogues ABT-199 and ABT-737 inhibit B-cell lymphoma 2 (Bcl-2), BCL2L1 long isoform (Bcl-xL) and BCL2L2 (Bcl-w) proteins and promote cancer cell death. Here, we show that at non-cytotoxic concentrations, these small molecules accelerate the deaths of non-cancerous cells infected with influenza A virus (IAV) or other viruses. In particular, we demonstrate that ABT-263 altered Bcl-xL interactions with Bcl-2 antagonist of cell death (Bad), Bcl-2-associated X protein (Bax), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA). ABT-263 thereby activated the caspase-9-mediated mitochondria-initiated apoptosis pathway, which, together with the IAV-initiated caspase-8-mediated apoptosis pathway, triggered the deaths of IAV-infected cells. Our results also indicate that Bcl-xL, Bcl-2 and Bcl-w interact with pattern recognition receptors (PRRs) that sense virus constituents to regulate cellular apoptosis. Importantly, premature killing of IAV-infected cells by ABT-263 attenuated the production of key pro-inflammatory and antiviral cytokines. The imbalance in cytokine production was also observed in ABT-263-treated IAV-infected mice, which resulted in an inability of the immune system to clear the virus and eventually lowered the survival rates of infected animals. Thus, the results suggest that the chemical inhibition of Bcl-xL, Bcl-2 and Bcl-w could potentially be hazardous for cancer patients with viral infections.  相似文献   

3.
Despite tremendous advances over the last 15 years in understanding fundamental mechanisms of apoptosis, this has failed to translate into improved cancer therapy for patients. However, there may now be light at the end of this long tunnel. Antiapoptotic Bcl-2 family members may be divided into two subclasses, one comprising Bcl-2, Bcl-X(L) and Bcl-w and the other Mcl-1 and Bcl2A1. Neutralization of both subclasses is required for apoptosis induction. Solution of the structure of antiapoptotic Bcl-2 family proteins has led to the design of novel small molecule inhibitors. Although many such molecules have been synthesized, rigorous verification of their specificity has often been lacking. Further studies have revealed that many putative Bcl-2 inhibitors are not specific and have other cellular targets, resulting in non-mechanism based toxicity. Two notable exceptions are ABT-737 and a related orally active derivative, ABT-263, which bind with high affinity to Bcl-2, Bcl-X(L) and Bcl-w and may prove to be useful tools for mechanistic studies. ABT-263 is in early clinical trials in lymphoid malignancies, small-cell lung cancer and chronic lymphocytic leukemia, and some patients have shown promising results. In in vitro studies, primary cells from patients with various B-cell malignancies are exquisitely sensitive to ABT-737, exhibiting novel morphological features of apoptosis including marked outer mitochondrial membrane rupture.  相似文献   

4.
Bcl-2 family proteins act as essential regulators and mediators of intrinsic apoptosis. Several lines of evidence suggest that the anti-apoptotic members of the family, including Bcl-2, Bcl-xL and Mcl-1, exhibit functional redundancy. However, the current evidence is largely indirect, and based mainly on pharmacological data using small-molecule inhibitors. In order to study compensation and redundancy of anti-apoptotic Bcl-2 proteins at the molecular level, we used a combined knockdown/overexpression strategy to essentially replace the function of one member with another. The results show that HeLa cells are strictly dependent on Mcl-1 for survival and correspondingly refractory to the Bcl-2/Bcl-xL inhibitor ABT-263, and remain resistant to ABT-263 in the context of Bcl-xL overexpression because endogenous Mcl-1 continues to provide the primary guardian role. However, if Mcl-1 is knocked down in the context of Bcl-xL overexpression, the cells become Bcl-xL-dependent and sensitive to ABT-263. We also show that Bcl-xL compensates for loss of Mcl-1 by sequestration of two key pro-apoptotic Bcl-2 family members, Bak and Bim, normally bound to Mcl-1, and that Bim is essential for cell death induced by Mcl-1 knockdown. To our knowledge, this is the first example where cell death induced by loss of Mcl-1 was rescued by the silencing of a single BH3-only Bcl-2 family member. In colon carcinoma cell lines, Bcl-xL and Mcl-1 also play compensatory roles, and Mcl-1 knockdown sensitizes cells to ABT-263. The results, obtained employing a novel strategy of combining knockdown and overexpression, provide unique molecular insight into the mechanisms of compensation by pro-survival Bcl-2 family proteins.  相似文献   

5.
The age-related decline in immunity reduces the effectiveness of vaccines in older adults. Immunosenescence is associated with chronic, low-grade inflammation, and the accumulation of senescent cells. The latter express Bcl-2 family members (providing resistance to cell death) and exhibit a pro-inflammatory, senescence-associated secretory phenotype (SASP). Preexisting senescent cells cause many aging-related disorders and therapeutic means of eliminating these cells have recently gained attention. The potential consequences of senescent cell removal on vaccine efficacy in older individuals are still ignored. We used the Bcl-2 family inhibitor ABT-263 to investigate the effects of pre-vaccination senolysis on immune responses in old mice. Two different ovalbumin (OVA)-containing vaccines (containing a saponin-based or a CpG oligodeoxynucleotide adjuvant) were tested. ABT-263 depleted senescent cells (apoptosis) and ablated the basal and lipopolysaccharide-induced production of SASP-related factors in old mice. Depletion of senescent cells prior to vaccination (prime/boost) had little effect on OVA-specific antibody and T-cell responses (slightly reduced and augmented, respectively). We then used a preclinical melanoma model to test the antitumor potential of senolysis before vaccination (prime with the vaccine and OVA boost by tumor cells). Surprisingly, ABT-263 treatment abrogated the vaccine's ability to protect against B16 melanoma growth in old animals, an effect associated with reduced antigen-specific T-cell responses. Some, but not all, of the effects were age-specific, which suggests that preexisting senescent cells were partly involved. Hence, depletion of senescent cells modifies immune responses to vaccines in some settings and caution should be taken when incorporating senolytics into vaccine-based cancer therapies.  相似文献   

6.
Zhao X  Ogunwobi OO  Liu C 《PloS one》2011,6(8):e21980
Our study aims to study the therapeutic effects of a novel Bcl-2 inhibitor, ABT-263, on hepatocellular carcinoma (HCC) and to provide primary preclinical data for future clinical trial with ABT-263. In this study we showed that Bcl-xL and survivin were up-regulated in HCC cell lines and human liver cancer tissues. Clinic used ABT-263 single treatment had no apoptotic effects on HCC cells whereas higher doses of ABT-263 did. Interestingly, the combination treatment of ABT-263 with survivin inhibitor YM-155 could result in significant apoptosis in HCC cells. Survivin inhibition through gene silencing significantly enhanced ABT-263 to induce apoptosis in HCC cells. We found that low dose of ABT-263 single treatment resulted in ERK activation and survivin up-regulation, which might be involved in the resistance of HCC cells to ABT-263 since blockade of ERK activation sensitized ABT-263-induced apoptosis. Importantly, ABT-263 and YM-155 combination treatment had no apoptotic effects on normal human hepatocytes. Taken together, these data suggest the combination treatment of Bcl-2 inhibitor and survivin inhibition may have a great potential for liver cancer therapy.  相似文献   

7.
Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics.  相似文献   

8.
The Bcl-2 family of proteins plays a major role in the regulation of apoptosis, or programmed cell death. Overexpression of the anti-apoptotic members of this family (Bcl-2, Bcl-xL, and Mcl-1) can render cancer cells resistant to chemotherapeutic agents and therefore these proteins are important targets for the development of new anti-cancer agents. Here we describe the discovery of a potent, highly selective, Bcl-2 inhibitor using SAR by NMR and structure-based drug design which could serve as a starting point for the development of a Bcl-2 selective anti-cancer agent. Such an agent would potentially overcome the Bcl-xL mediated thrombocytopenia observed with ABT-263.  相似文献   

9.
Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics.  相似文献   

10.
Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment.  相似文献   

11.
Han Y  Kim K  Shim JY  Park C  Song JY  Yun YS 《Molecules and cells》2008,25(2):224-230
Ceramides are well-known second messengers that induce apoptosis in various kinds of cancer cells, and their effects are closely related to radiation sensitivity. Phytoceramides, the yeast counterparts of the mammalian ceramides, are also reported to induce apoptosis. We investigated the effect of a novel ceramide derivative, N-acetylphytosphingosine (NAPS), on the radiosensitivity of NCI-H460 human lung carcinoma cells and its differential cytotoxicity in tumor and normal cells. The combination of NAPS with radiation significantly increased clonogenic cell death and caspase-dependent apoptosis. The combined treatment greatly increased Bax expression and Bid cleavage, but not Bcl-2 expression. However, there was no effect on radiosensitivity and apoptosis in BEAS2B cells, which derive from normal human bronchial epithelium. Cell proliferation and DNA synthesis were significantly inhibited by NAPS in both NCI-H460 and BEAS2B cells, but only the BEAS2B cells recovered by 48h after removal of the NAPS. Furthermore, the NCI-H460 cells underwent more DNA fragmentation than the BEAS2B cells in response to NAPS. Our results indicate that NAPS may be a potential radiosensitizing agent with differential effects on tumor vs. normal cells.  相似文献   

12.
As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies.  相似文献   

13.
High levels of BCL-2 family proteins are implicated in a failed/ineffective apoptotic programme, often resulting in diseases, including cancer. Owing to their potential as drug targets in cancer therapy, several inhibitors of BCL-2 family proteins have been developed. These primarily target specific members of the BCL-2 family, particularly BCL-2 and BCL-XL but are ineffective against MCL-1. Major efforts have been invested in developing inhibitors of MCL-1, which is commonly amplified in human tumours and associated with tumour relapse and chemoresistance. In this report, the specificity of several BCL-2 family inhibitors (ABT-263, UCB-1350883, apogossypol and BH3I-1) was investigated and compared with putative MCL-1 inhibitors designed to exhibit improved or selective binding affinities for MCL-1 (TW-37, BI97C1, BI97C10, BI112D1, compounds 6 and 7, and MCL-1 inhibitor molecule (MIM-1)). ABT-263, BI97C1, BI112D1, MIM-1 and TW-37 exhibited specificity in inducing apoptosis in a Bax/Bak- and caspase-9-dependent manner, whereas the other agents showed no killing activity, or little or no specificity. Of these inhibitors, only ABT-263 and UCB-1350883 induced apoptosis in a BCL-2- or BCL-XL-dependent system. In cells that depend on MCL-1 for survival, ABT-263 and TW-37 induced extensive apoptosis, suggesting that at high concentrations these inhibitors have the propensity to inhibit MCL-1 in a cellular context. TW-37 induced apoptosis, assessed by chromatin condensation, caspase processing and phosphatidylserine externalisation, in a BAK-dependent manner and in cells that require MCL-1 for survival. TW-37-mediated apoptosis was also partly dependent on NOXA, suggesting that derivatives of TW-37, if engineered to exhibit better selectivity and efficacy at low nanomolar concentrations, may provide useful lead compounds for further synthetic programmes. Expanded medicinal chemistry iteration, as performed for the ABT series, may likewise improve the potency and specificity of the evaluated MCL-1 inhibitors.  相似文献   

14.
We assessed the capability of paclitaxel, one of the taxanes, to induce death in two prostate cancer lines, LNCaP and PC3. Paclitaxel drove an apoptotic pathway in LNCaP, but not in PC3 cells, in response to G2/M arrest. An examination of the levels of anti-apoptotic proteins revealed that Bcl-xl was much higher in PC3 cells than in LNCaP cells and Bcl2 could be detected only in PC3 cells, not in LNCaP cells. Knocking down Bcl-xl enhanced paclitaxel-induced apoptosis in LNCaP cells, while we were unable to knock down Bcl-xl efficiently in PC3 cells. Significantly, a comparison of ABT-263, a specific inhibitor of Bcl2 and Bcl-xl, with ABT-199, a Bcl2 selective inhibitor, disclosed that only ABT-263, not ABT-199, could induce apoptosis in LNCaP and PC3 cells. The results indicate that Bcl-xl has a protective role against paclitaxel-induced apoptosis in LNCaP and PC3 cells, and its overexpression causes the paclitaxel resistance seen in PC3 cells. Interestingly, combined paclitaxel with ABT-263 to treat LNCaP and PC3 cells demonstrated synergistic apoptosis activation, indicating that ABT-263 could enhance paclitaxel-induced apoptosis in LNCaP cells and overcome Bcl-xl overexpression to trigger paclitaxel-induced apoptosis in PC3 cells. We also observed that the activation of apoptosis in LNCaP cells was more efficient than in PC3 cells in response to paclitaxel plus ABT-263 or to ABT-263 alone, suggesting that the apoptosis pathway in PC3 cells might have further differences from that in LNCaP cells even after Bcl-xl overexpression is accounted for.  相似文献   

15.
Non-invasive real time methods for characterizing biomolecular events that contribute towards apoptotic kinetics would be of significant importance in the field of cancer biology. Effective drug-induced apoptosis is an important factor for establishing the relationship between cancer genetics and treatment sensitivity. The objective of this study was to develop a non-invasive technique to characterize cancer cells that are undergoing drug-induced apoptosis. We used dielectrophoresis to determine apoptotic cells as early as 2 h post drug treatment as compared to 24 h with standard flow cytometry method using non-small cell lung cancer (NSCLC) adenocarcinoma cell line (HCC1833) as a study model. Our studies have shown significant differences in apoptotic cells by chromatin condensation, formation of apoptotic bodies and exposure of phosphatidylserine (PS) on the extracellular surface when the cells where treated with a potent Bcl-2 family inhibitor drug (ABT-263). Time lapse dielectrophoretic studies were performed over 24 h period after exposure to ABT-263 at clinically relevant concentrations. The dielectrophoretic studies were compared to Annexin-V FITC flow assay for the detection of PS in mid-stage apoptosis using flow cytometry. As a result of physical and biochemical changes, inherent dielectric properties of cells undergoing varying stages of apoptosis showed amplified changes in their cytoplasmic and membrane capacitance. In addition, zeta potential of these fixed isolated cells was measured to obtain direct correlation to biomolecular events.  相似文献   

16.
Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using 3H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.  相似文献   

17.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.  相似文献   

18.
It has been known since the early 90s that apoptosis is the mode of death of cancer cells during chemotherapy.1 Propensity of cells to undergo apoptosis is modulated by the balance of pro-apoptotic versus anti-apoptotic members of Bcl-2 family proteins.2 Mitochondrial outer membrane permeabilization (MOMP) which leads to release of cytochrome c and other apoptogenic factors triggering apoptosis occurs as a result of shift of this balance towards pro-apoptotic Bcl-2 proteins. Furthermore, constitutive prevalence of the anti-apoptotic Bcl-2 family proteins is considered to promote cancer development; the classic example is B-cell lymphoma. Anticancer strategies therefore, were designed that rely on promoting apoptosis of cancer cells via altering the balance among the interacting Bcl-2 proteins. One strategy involves the use of antisense oligonucleotides targeting anti-apoptotic Bcl-2 proteins. Preclinical and clinical investigations on the drugs developed along this strategy [e.g. Oblimersen (Genasense®)] are already well advanced. Another, attractive approach is to use agents that mimic the Bcl-2 homology 3 (BH3) domains of the pro-apoptotic Bcl-2 family proteins (BH3 mimetics). Their mode of action involves competitive binding to surface hydrophobic grooves of anti-apoptotic Bcl-2 members thereby releasing the pro-apoptotic Bcl-2 molecules otherwise sequestered in complexes with the anti-apoptotic ones.2-4 The most investigated BH3 mimetic ABT-737 demonstrated distinct antitumor activity in vitro and in vivo against some leukemia types and solid tumors.3,5

In the article published in this issue of Cell Cycle6 Ponassi and her collaborators describe a novel BH3 mimetic, named 072RB, constructed by replacing specific moieties of Bim-BH3 with natural and non-natural aminoacids and adding an internalizing sequence. In elegant studies the authors convincingly demonstrate internalization and mitochondrial localization of 072RB followed by suppression of growth and apoptotic death of cells of leukemia cell lines. They also observed lethal ex vivo effects of 072RB on AML leukemic cells as well as remarkable inhibition of growth of xenografted human AML cells in NOD/SCID mice with no evidence of toxicity to normal tissue. Normal human lymphocytes, whether quiescent or mitogenically stimulated, were resistant to this BH3 mimetic. An important virtue of 072RB is resistance to proteolysis conferring its stability when used in vivo.

The interplay between the pro-apoptotic and anti-apoptotic Bcl-2 family members is rather complex because depending on cell type and the agent that induces apoptosis different members interact with each other. The mechanism of these interactions is still not fully understood. According to the “different affinity” model the BH3-only proteins Bad and Bmf target Bcl-2, Bcl-w and Bcl-xL, Noxa targets Mcl-1 and A1 whereas Bim and Puma target all the above pro-survival Bcl-2 proteins with comparable affinities.3 In the “direct activator” model Bim, tBid and Puma are the most downstream molecules, directly binding to Bax/Bak and thereby preventing their release, oligomerization and MOMP. In either of these models therefore, the Bim-activating BH-3 mimetic, such as 072RB, is expected to have wider spectrum of activity towards different cell types and different inducers of apoptosis than for instance ABT-737, as the latter, because of its Bad-like structure, does not target Mcl-1.

It is too early to predict whether BH3 mimetics bestow the breakthrough in cancer therapy. Their unique mechanism of action specifically targeting apoptotic machinery raises hopes that this may be the case.3 The new BH3 mimetic 072RB described by Ponassi et al.6 has all attributes to become the leading member of this new class of anticancer drugs. 072RB definitely deserves further evaluation in clinical trials to reveal its therapeutic capabilities whether used as a single agent or in combinatorial therapy.

ReferencesGorczyca W, at al. Leukemia 1993; 7:659-70.Fletcher JI, et al. Cell Cycle 2008; 7:39-44.Labi V, et al. Cell Death Differ 2008; 15:977-87.Wade et al., Cell Cycle 2008; 7:1973-82.Konoplewa M, et al. Cancer Cell 2006; 10:375-88.Ponassi R, et al. Cell Cycle 2008; In this issue.  相似文献   

19.
The anti-apoptotic Bcl-2 family of proteins, including Bcl-2, Bcl-X(L) and Mcl-1, are well-validated drug targets for cancer treatment. Several small molecules have been designed to interfere with Bcl-2 and its fellow pro-survival family members. While ABT-737 and its orally active analog ABT-263 are the most potent and specific inhibitors to date that bind Bcl-2 and Bcl-X(L) with high affinity but have a much lower affinity for Mcl-1, they are not very effective as single agents in certain cancer types because of elevated levels of Mcl-1. Accordingly, compounds that specifically target Mcl-1 may overcome this resistance. In this study, we identified and characterized the natural product marinopyrrole A as a novel Mcl-1-specific inhibitor and named it maritoclax. We found that maritoclax binds to Mcl-1, but not Bcl-X(L), and is able to disrupt the interaction between Bim and Mcl-1. Moreover, maritoclax induces Mcl-1 degradation via the proteasome system, which is associated with the pro-apoptotic activity of maritoclax. Importantly, maritoclax selectively kills Mcl-1-dependent, but not Bcl-2- or Bcl-X(L)-dependent, leukemia cells and markedly enhances the efficacy of ABT-737 against hematologic malignancies, including K562, Raji, and multidrug-resistant HL60/VCR, by ~60- to 2000-fold at 1-2 μM. Taken together, these results suggest that maritoclax represents a new class of Mcl-1 inhibitors, which antagonizes Mcl-1 and overcomes ABT-737 resistance by targeting Mcl-1 for degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号