首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural role of extracellular-matrix (ECM) has been recognized in both plants and animals as a support and anchorage-inducing cell behavior. Unlike the animal ECM proteins, the proteins that have been identified in plant ECM have not yet been purified from whole plants and cell wall. As several immunological data indicate the presence of animal ECM-like proteins in plants cell wall, especially under salt stress or water deficit, we propose a protocol to purify a fibronectin-like protein from the cell wall of epicotyls of young germinating peas. The process consists of a combination of gelatin and heparin affinity chromatography, close to the classical one used for human blood plasma fibronectin purification. Proteins with affinity for gelatin and heparin, immunologically related to human fibronectin, are found in the cell wall of epicotyls grown under salt stress or not. Total amount of purified proteins is 3-4 times more enriched in salt stressed epicotyls. SDS-PAGE and Western blot with antibodies directed against human blood plasma fibronectin give evidence that the cell wall proteins purified by gelatin/heparin affinity chromatography are closely related to human fibronectin. The present protocol leads us to purify 17 (control) or 65 (salt stress) micrograms of protein per g of fresh starting material. Our results suggest that plant cell wall proteins can provide better anchorage of the cell to its cell-wall during salt stress or water deficit and could be considered not only as cell adhesion but also as signaling molecules.  相似文献   

2.
Plant protein inhibitors of cell wall degrading enzymes   总被引:2,自引:0,他引:2  
Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.  相似文献   

3.
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM.  相似文献   

4.
霍垲  陆巍  李霞  陈平波 《植物学报》2014,49(5):618-625
细胞外ATP(extracellular ATP, eATP)是目前公认的细胞外信号分子, 参与调控多种环境刺激下植物的生长、发育和防御反应。在植物细胞信号转导过程中, eATP具有双重功能, 其作用主要取决于细胞外基质中eATP的浓度。eATP含量过高或者过低都会导致细胞死亡, 适度水平的eATP则有助于植物的生长和发育。细胞外三磷酸腺苷双磷酸酶(Apyrase)严格控制细胞外基质中eATP的水平, 因此有助于调控植物在逆境条件下的生长和防御反应。该文总结了植物中eATP的发现、产生和清除以及受体和信号转导等研究进展, 重点论述eATP在逆境条件下的生理功能, 并对植物eATP的研究方向作了展望。  相似文献   

5.
The plant extracellular matrix (ECM) is complex and diverse, and is involved in cell-cell communication in a wide range of developmental, reproductive and pathogenic processes. Characterisation of integral ECM components is leading to improved understanding of their roles in signalling. Interactions between the extracellular domains of plant plasma membrane receptor kinases and their ligands are potentially regulated by the properties of the ECM. Several of these interactions, for example those involving the S-locus receptor kinase, are being characterised in some detail. Non-protein constituents are also implicated in regulating the movement of signalling molecules in the ECM, which is associated with developmental patterning. In contrast to the situation in animal cells, cytoskeleton-integrin-ECM signalling complexes appear not to be dominant features of signal transduction in plant cells. Nevertheless, structural adhesions between the plasma membrane and cell wall are important for a variety of functions.  相似文献   

6.
For many years, cytokinesis in eukaryotic cells was considered to be a process that took a variety of forms. This is rather surprising in the face of an apparently conservative mitosis. Animal cytokinesis was described as a process based on an actomyosin-based contractile ring, assembling, and acting at the cell periphery. In contrast, cytokinesis of plant cells was viewed as the centrifugal generation of a new cell wall by fusion of Golgi apparatus-derived vesicles. However, recent advances in animal and plant cell biology have revealed that many features formerly considered as plant-specific are, in fact, valid also for cytokinetic animal cells. For example, vesicular trafficking has turned out to be important not only for plant but also for animal cytokinesis. Moreover, the terminal phase of animal cytokinesis based on midbody microtubule activity resembles plant cytokinesis in that interdigitating microtubules play a decisive role in the recruitment of cytokinetic vesicles and directing them towards the cytokinetic spaces which need to be plugged by fusing endosomes. Presently, we are approaching another turning point which brings cytokinesis in plant and animal cells even closer. As an unexpected twist, new studies reveal that both plant and animal cytokinesis is driven not so much by Golgi-derived vesicles but rather by homotypically and heterotypically fusing endosomes. These are generated from cytokinetic cortical sites defined by preprophase microtubules and contractile actomyosin ring, which induce local endocytosis of both the plasma membrane and cell wall material. Finally, plant and animal cytokinesis meet together at the physical separation of daughter cells despite obvious differences in their preparatory events.  相似文献   

7.
Background: During the last three decades systemic fungal infections associated to immunosuppressive therapies have become a serious healthcare problem. Clinical development of new antifungals is an urgent requirement. Since fungal but not mammalian cells are encased in a carbohydrate-containing cell wall, which is required for the growth and viability of fungi, the inhibition of cell wall synthesizing machinery, such as β(1,3)-D-glucan synthases (GS) and chitin synthases (CS) that catalyze the synthesis of β(1-3)-D-glucan and chitin, respectively, represent an ideal mode of action of antifungal agents. Although the echinocandins anidulafungin, caspofungin and micafungin are clinically well-established GS inhibitors for the treatment of invasive fungal infections, much effort must still be made to identify inhibitors of other enzymes and processes involved in the synthesis of the fungal cell wall.Purpose: Since natural products (NPs) have been the source of several antifungals in clinical use and also have provided important scaffolds for the development of semisynthetic analogues, this review was devoted to investigate the advances made to date in the discovery of NPs from plants that showed capacity of inhibiting cell wall synthesis targets. The chemical characterization, specific target, discovery process, along with the stage of development are provided here.Methods: An extensive systematic search for NPs against the cell wall was performed considering all the articles published until the end of 2020 through the following scientific databases: NCBI PubMed, Scopus and Google Scholar and using the combination of the terms “natural antifungals” and “plant extracts” with “fungal cell wall”.Results: The first part of this review introduces the state of the art of the structure and biosynthesis of the fungal cell wall and considers exclusively those naturally produced GS antifungals that have given rise to both existing semisynthetic approved drugs and those derivatives currently in clinical trials. According to their chemical structure, natural GS inhibitors can be classified as 1) cyclic lipopeptides, 2) glycolipids and 3) acidic terpenoids. We also included nikkomycins and polyoxins, NPs that inhibit the CS, which have traditionally been considered good candidates for antifungal drug development but have finally been discarded after enduring unsuccessful clinical trials. Finally, the review focuses in the most recent findings about the growing field of plant-derived molecules and extracts that exhibit activity against the fungal cell wall. Thus, this search yielded sixteen articles, nine of which deal with pure compounds and seven with plant extracts or fractions with proven activity against the fungal cell wall. Regarding the mechanism of action, seven (44%) produced GS inhibition while five (31%) inhibited CS. Some of them (56%) interfered with other components of the cell wall. Most of the analyzed articles refer to tests carried out in vitro and therefore are in early stages of development.Conclusion: This report delivers an overview about both existing natural antifungals targeting GS and CS activities and their mechanisms of action. It also presents recent discoveries on natural products that may be used as starting points for the development of potential selective and non-toxic antifungal drugs.  相似文献   

8.
Ectomycorrhizal (ECM) fungi are obligate symbionts of dominant vascular plants, liverworts and hornworts. There are reports of about 20,000 to 25,000 ECM fungi that promote plant growth by facilitating enhanced water and nutrient absorption, and provide tolerance to environmental stresses. These below-ground fungi play a key role in terrestrial ecosystems as they regulate plant diversity, nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Because ECM fungi are obligate root symbionts, host plant can have a strong effect on ECM species richness and community composition. The biogeographic pattern and detailed functioning and regulation of these mycorrhizosphere processes are still poorly understood and require detailed study. More recent researches have placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. Over the years the main focus in ECM research has been on the study of diversity and specificity of ECM strains, the role of ECM in regeneration of degraded ecosystem, the growth and establishment of seedlings through nutrient acquisition and the mediation of plant responses to various types of stress. In this review, recent progresses in ectomycorrhizal biology are presented, especially the potential role of ECM symbioses in resistance or tolerance to various biotic and abiotic stresses, and in maintinance of plant diversity for proper ecosystem functioning.  相似文献   

9.
An overview of the biomechanic and morphogenetic function of the plant extracellular matrix (ECM) in its primary state is given. ECMs can play a pivotal role in cellular osmo- and volume-regulation, if they enclose the cell hermetically and constrain hydrostatic pressure evoked by osmotic gradients between the cell and its environment. From an engineering viewpoint, such cell walls turn cells into hydraulic machines, which establishes a crucial functional differences between cell walls and other cellular surface structures. Examples of such hydraulic machineries are discussed. The function of cell walls in the control of pressure, volume, and shape establishes constructional evolutionary constraints, which can explain aspects commonly considered typical of plants (sessility, autotrophy). In plants, 'cell division' by insertion of a new cell wall is a process of internal cytoplasmic differentiation. As such it differs fundamentally from cell separation during cytokinesis in animals, by leaving the coherence of the dividing protoplast basically intact. The resulting symplastic coherence appears more important for plant morphogenesis than histological structure; similar morphologies are realized on the basis of distinct tissue architectures in different plant taxa. The shape of a plant cell is determined by the shape its cell wall attains under multiaxial tensile stress. Consequently, the development of form in plants is achieved by a differential plastic deformation of the complex ECM in response to this multiaxial force (hydrostatic pressure). Current concepts of the regulation of these deformation processes are briefly evaluated.  相似文献   

10.
Pattern formation in plants is now thought to be primarily dependent on positional information during development. We discuss the prevalent theories on how position is deciphered by cells in an organism and highlight the recent advances implicating molecules of the cell wall or extracellular matrix (ECM) in this process. We compare the functions of the ECM in plants and animals and describe the various cell and substrate adhesion molecules of the animal ECM which play a role in morphogenesis and cell movement. We propose that analogous molecules may occur in plants and provide evidence for the presence of a substrate adhesion molecule like vitronectin in plants and algae. We provide a model for how substrate adhesion molecules may be involved in a special case of cell movement in plants, pollination.  相似文献   

11.
The role of cell wall in plant embryogenesis   总被引:7,自引:0,他引:7  
This review presents recent data about cell wall involvement in plant embryogenesis. During plant development, the cell wall is subjected to precise regulation. During this process a bidirectional information exchange between the cell wall and the protoplast is observed. The cell wall also mediates in the cell-cell (apoplastic) and cell to cell (symplastic) information flow. Especially some products derived from the hydrolysis of specific cell wall compounds can act as short distance signal transduction molecules during the development. Oligosaccharins are a group of such products. Their activity and sources focused the researchers' attention on the biochemical composition of the cell wall and the activity of some cell wall enzymes. The dramatic influence on the embryo body shape has also the cell wall synthesis machinery, including vesicular secretion pathways. Moreover, the interplay between the turgor pressure and counteracting cell walls and neighbouring cells (in higher organisms) creates the specific mechanical forces influencing the development of the whole plant. We conclude that discovering factors which can influence cell wall physiology and architecture is crucial for a better understanding of plant embryogenesis. In this review we summarize some recent experimental data reporting plant cell wall involvement in embryogenesis, putting special emphasis on somatic embryogenesis.  相似文献   

12.
阿拉伯半乳糖蛋白(arabinogalactan proteins,AGPs)是一类富含羟脯氨酸/脯氨酸的高度糖基化的蛋白分子,在高等植物的细胞壁、质膜和胞外基质中广泛存在。AGPs是一类重要的糖蛋白,它在被子植物营养生长和生殖发育的各个环节都可能发挥作用,涉及体细胞胚胎发生、细胞增殖、细胞膨大、细胞程序性死亡、损伤防御、根形态建成、花粉管生长以及植物激素信号传导等。植物结构基因组学及功能基因组学的快速发展,使得人们对AGPs的表达模式和功能特点有了更深入的认识。本文首先就AGPs的分子结构和分类,然后重点就利用基因组序列信息分析以及正、反向遗传学等手段进行的AGPs在植物营养生长、生殖发育、细胞程序性死亡,以及分子互作和信号传导等方面的作用的研究进行了综述。  相似文献   

13.
Nonhost resistance and nonspecific plant defenses   总被引:13,自引:0,他引:13  
  相似文献   

14.
The molecular basis of plant cell wall extension   总被引:17,自引:0,他引:17  
In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.  相似文献   

15.
Candida albicans ECM33 encodes a glycosylphosphatidylinositol-linked cell wall protein that is important for cell wall integrity. It is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis. To identify potential mechanisms through which Ecm33p contributes to virulence, we investigated the interactions of C. albicans ecm33Delta mutants with endothelial cells and the FaDu oral epithelial cell line in vitro. The growth rate of blastospores of strains containing either one or no intact copies of ECM33 was 50% slower than that of strains containing two intact copies of ECM33. However, all strains germinated at the same rate, forming similar-length hyphae on endothelial cells and oral epithelial cells. Strains containing either one or no intact copies of ECM33 had modestly reduced adherence to both types of host cells, and a markedly reduced capacity to invade and damage these cells. Saccharomyces cerevisiae expressing C. albicans ECM33 did not adhere to or invade epithelial cells, suggesting that Ecm33p by itself does not act as an adhesin or invasin. Examination of ecm33Delta mutants by transmission electron microscopy revealed that the cell wall of these strains had an abnormally electron-dense outer mannoprotein layer, which may represent a compensatory response to reduced cell wall integrity. The hyphae of these mutants also had aberrant surface localization of the adhesin Als1p. Collectively, these results suggest that Ecm33p is required for normal cell wall architecture as well as normal function and expression of cell surface proteins in C. albicans.  相似文献   

16.
Expansins and cell wall expansion   总被引:10,自引:4,他引:6  
The subject of this review is the discovery of expansins andtheir role in plant cell wall expansion. The review is introducedwith a summary of the importance of wall expansion in the controlof plant cell growth, and a brief discussion of the nature ofcell wall extension in plants. The role of expansins in wallextension and their mechanism of action will be reviewed, and,finally, the role of expansins in plant cell growth will bediscussed. Key words: Expansins, cell expansion, cell wall extension, plant growth  相似文献   

17.
One of the recent paradigm shifts in stem cell biology has been the discovery that stem cells can begin to differentiate into mature tissue cells when exposed to intrinsic properties of the extracellular matrix (ECM), such as matrix structure, elasticity, and composition. These parameters are known to modulate the forces a cell can exert upon its matrix. Mechano-sensitive pathways subsequently convert these biophysical cues into biochemical signals that commit the cell to a specific lineage. Just as with well-studied growth factors, ECM parameters are extremely dynamic and are spatially- and temporally-controlled during development, suggesting that they play a morphogenetic role in guiding differentiation and arrangement of cells. Our ability to dynamically regulate the stem cell niche as the body does is likely a critical requirement for developing differentiated cells from stem cells for therapeutic applications. Here, we present the emergence of stem cell mechanobiology and its future challenges with new biomimetic, three-dimensional scaffolds that are being used therapeutically to treat disease.  相似文献   

18.
Lymphocyte interactions with extracellular matrix   总被引:22,自引:0,他引:22  
Y Shimizu  S Shaw 《FASEB journal》1991,5(9):2292-2299
To mediate an immune response, lymphocytes must be able to interact with and respond to the surrounding extracellular environment. In addition to cell surface molecules that facilitate adhesion of lymphocytes to other cells, recent studies have demonstrated that lymphocytes interact with glycoproteins and glycosaminoglycans that are major components of the extracellular matrix (ECM). Although many receptors mediating the effects of ECM components on lymphocyte function remain poorly defined, a number of lymphocyte ECM receptors have recently been identified; these include members of the integrin family of adhesion molecules as well as structurally unrelated molecules such as CD44 and CD26. Furthermore, as lymphocytes must be able to move between various microenvironments in vivo, they have proved to be an excellent cell type in which to identify and analyze various modes of regulation of cell-ECM interactions. As with other cell types, the ECM has been shown to have multiple effects on lymphocytes; functional analysis reveals effects of the ECM on lymphocyte migration, recognition/activation, and differentiation. These studies emphasize: 1) the importance of lymphocytes as a model system for identifying and analyzing ECM receptor expression and function, and 2) the multiple roles that the ECM plays in the function of the immune system in vivo.  相似文献   

19.
The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways.  相似文献   

20.
Fragments of extracellular matrix as mediators of inflammation   总被引:3,自引:0,他引:3  
Classically, the extracellular matrix (ECM) was viewed as a supporting structure for stabilizing the location of cells in tissues and for preserving the architecture of tissues. This conception has changed dramatically over the past few decades with discoveries that ECM has profound influences on the structure, viability, and functions of cells. Much of the data supporting this new paradigm has been obtained from studies of normal and pathological structural cells such as fibroblasts, smooth muscle cells, and malignant cells, as, for example, breast cancer epithelial cells. However, there has also been recognition that effects of ECM on cells extend to inflammatory cells. In this context, attention has been drawn to fragments of ECM components. In this review, we present information supporting the concept that proteolytic fragments of ECM affect multiple functions and properties of inflammatory and immune cells. Our focus is particularly upon neutrophils, monocytes, and macrophages and fragments derived from collagens, elastin, and laminins. Hyaluronan fragments, although they are not products of proteolysis, are also discussed, as they are a notable example of ECM fragments that exhibit important effects on inflammatory cells. Further, we summarize some exciting recent developments in this field as a result of mouse models in which defined ECM fragments and their receptors are clearly implicated in inflammation in vivo. Thus, this review underscores the idea that proteolysis of ECM may well have implications that go beyond modifying the structural environment of cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号