首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian phosphatidylcholine-specific phospholipase D1 (PLD1) is a signal transduction-activated enzyme thought to function in multiple cell biological settings including the regulation of membrane vesicular trafficking. PLD1 is activated by the small G proteins, ADP-ribosylation factor (ARF) and RhoA, and by protein kinase C-alpha (PKC-alpha). This stimulation has been proposed to involve direct interaction and to take place at a distinct site in PLD1 for each activator. In the present study, we employed the yeast two-hybrid system to attempt to identify these sites. Successful interaction of ARF and PKC-alpha with PLD1 was not achieved, but a C-terminal fragment of human PLD1 (denoted "D4") interacted with the active mutant of RhoA, RhoAVal-14. Deletion of the CAAX box from RhoAVal-14 decreased the strength of the interaction, suggesting that lipid modification of RhoA is important for efficient binding to PLD1. The specificity of the interaction was validated by showing that the PLD1 D4 fragment interacts with glutathione S-transferase-RhoA in vitro in a GTP-dependent manner and that it associates with RhoAVal-14 in COS-7 cells, whereas the N-terminal two-thirds of PLD1 does not. Finally, we show that recombinant D4 peptide inhibits RhoA-stimulated PLD1 activation but not ARF- or PKC-alpha-stimulated PLD1 activation. These results conclusively demonstrate that the C-terminal region of PLD1 contains the RhoA-binding site and suggest that the ARF and PKC interactions occur elsewhere in the protein.  相似文献   

2.
G protein-coupled and tyrosine kinase receptor activation of phospholipase D1 (PLD1) play key roles in agonist-stimulated cellular responses such as regulated exocytosis, actin stress fiber formation, and alterations in cell morphology and motility. Protein Kinase C, ADP-ribosylation factor (ARF), and Rho family members activate PLD1 in vitro; however, the actions of the stimulators on PLD1 in vivo have been proposed to take place through indirect pathways. We have used the yeast split-hybrid system to generate PLD1 alleles that fail to bind to or to be activated by RhoA but that retain wild-type responses to ARF and PKC. These alleles then were employed in combination with alleles unresponsive to PKC or to both stimulators to examine the activation of PLD1 by G protein-coupled receptors. Our results demonstrate that direct stimulation of PLD1 in vivo by RhoA (and by PKC) is critical for significant PLD1 activation but that PLD1 subcellular localization and regulated phosphorylation occur independently of these stimulatory pathways.  相似文献   

3.
The identity of G proteins mediating CCK-stimulated phospholipase D (PLD) activity was determined in intestinal smooth muscle cells. CCK-8 activated G(q/11), G(13), and G(12), and the monomeric G proteins Ras-homology protein (RhoA) and ADP ribosylation factor (ARF). Activation of RhoA, but not ARF, was mediated by G(13) and inhibited by Galpha(13) antibody. CCK-stimulated PLD activity was partly mediated by RhoA and could be inhibited to the same extent (47 +/- 2% to 53 +/- 6%) by 1) a dominant negative RhoA mutant, 2) RhoA antibody or Galpha(13) antibody, and 3) Clostridium botulinum C3 exoenzyme. PLD activity was also inhibited by ARF antibody, and the effect was additive to that of RhoA antibody or C3 exoenzyme. PLD activity was inhibited by calphostin C, bisindolylmaleimide I, and a selective protein kinase C (PKC)-alpha inhibitor; the inhibition was additive to that of ARF and RhoA antibodies and C3 exoenzyme. In contrast, activated G(12) was not coupled to RhoA or ARF, and Galpha(12) antibody augmented PLD activity. Thus agonist-stimulated PLD activity is mediated additively by G(13)-dependent RhoA and by ARF and PKC-alpha and is modulated by an inhibitory G(12)-dependent pathway.  相似文献   

4.
Activation of phosphatidylcholine-specific phospholipase D (PLD) constitutes an important part of the cellular response to agonist signaling. PLD1 is stimulated in vitro in a direct and synergistic manner by protein kinase C (PKC), ADP-ribosylation factor (ARF) and Rho family members. However, the direct and specific role of each of these effectors in agonist-stimulated PLD activation is poorly understood. We have used transposon mutagenesis to generate a library of PLD1 alleles containing random pentapeptide insertions. Forty-five alleles were characterized to identify functionally important regions. Use of an allele unresponsive to PKC, but otherwise seemingly normal, to examine coupling of PLD1 to a subset of G-protein-coupled receptors demonstrates for the first time direct stimulation of PLD1 in vivo by PKC and reveals that this direct stimulation is unexpectedly critical for PLD1 activation.  相似文献   

5.
Receptor-regulated phospholipase D (PLD) is a key signaling pathway implicated in the control of fundamental biological processes. Here evidence is presented that in addition to protein kinase C (PKC) and Rho GTPases, Ca(2+) response evoked by sphingosine 1-phosphate (S1P) also participates to the enzyme regulation. Ca(2+) was found critical for PKC(alpha)-mediated PLD activation. Moreover, S1P-induced PLD activity resulted diminished by calmodulin inhibitors such as W-7 and CGS9343B implicating its involvement in the process. A plausible candidate for Ca(2+)-dependent PLD regulation by S1P was represented by calcineurin, in view of the observed reduction of the stimulatory effect by cyclosporin A. In contrast, monomeric GTP-binding protein Ral was translocated to membranes by S1P in a Ca(2+)-independent manner, ruling out its possible role in agonist-mediated regulation of PLD.  相似文献   

6.
Lower esophageal sphincter (LES) tone depends on PGF(2alpha) and thromboxane A(2) acting on receptors linked to G(i3) and G(q) to activate phospholipases and produce second messengers resulting in muscle contraction. We therefore examined PGF(2alpha) signal transduction in circular smooth muscle cells isolated by enzymatic digestion from cat esophagus (Eso) and LES. In Eso, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(13) and the monomeric G proteins RhoA and ADP-ribosylation factor (ARF)1 and by the C3 exoenzyme of Clostridium botulinum. A [(35)S]GTPgammaS-binding assay confirmed that G(13), RhoA, and ARF1 were activated by PGF(2alpha). Contraction of Eso was reduced by propranolol, a phospholipase D (PLD) pathway inhibitor and by chelerythrine, a PKC inhibitor. In LES, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(q) and G(i3), and a [(35)S]GTPgammaS-binding assay confirmed that G(q) and G(i3) were activated by PGF(2alpha). PGF(2alpha)-induced contraction of LES was reduced by U-73122 and D609 and unaffected by propranolol. At low PGF(2alpha) concentration, contraction was blocked by chelerythrine, whereas at high concentration, contraction was blocked by chelerythrine and CGS9343B. Thus, in Eso, PGF(2alpha) activates a PLD- and protein kinase C (PKC)-dependent pathway through G(13), RhoA, and ARF1. In LES, PGF(2alpha) receptors are coupled to G(q) and G(i3), activating phosphatidylinositol- and phosphatidylcholine-specific phospholipase C. At low concentrations, PGF(2alpha) activates PKC. At high concentration, it activates both a PKC- and a calmodulin-dependent pathway.  相似文献   

7.
The regulatory mechanism through which the phospholipase D (PLD) isoforms PLD1 and PLD2 are activated is poorly understood. We investigated the possibility that the PLD isozymes are differentially regulated in response to pharmacologic stimulants in cells. In this report, we demonstrate for the first time that H2O2 and EGF differentially induce tyrosine phosphorylation of the PLD isozymes in A431 cells, which express both PLD1 and PLD2. H2O2 induced tyrosine phosphorylation of PLD1 and PLD2, whereas EGF only caused the tyrosine phosphorylation of PLD2. Both agents also induced phosphorylation of the EGF receptor. Interestingly, the PLD isozymes were associated with the EGF receptor and PKC-alpha in a ligand independent manner. Activation of PLD by H2O2 and EGF nearly correlated with tyrosine phosphorylation of the protein in PLD1 immune complexes. Activation of PLD by both agents was inhibited by the PKC inhibitor, Ro 31-8220, and by the down-regulation of PKC. Pretreatment of the cells with the tyrosine kinase inhibitor tyrphostin AG1478 resulted in inhibition of the H2O2 and EGF-induced tyrosine phosphorylation and PLD activation. These results indicate that H2O2 and EGF induce differential tyrosine phosphorylation of PLD isozymes. Also, the activation of PLD by these agonists involves tyrosine phosphorylation and PKC activation.  相似文献   

8.
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.  相似文献   

9.
Previous studies showed that in C2C12 cells, phospholipase D (PLD) and its known regulators, RhoA and protein kinase Calpha (PKCalpha), were downstream effectors in sphingosine 1-phosphate (SPP) signalling. Moreover, the role of PKC for SPP-mediated PLD activation and the requirement of PKCalpha for RhoA translocation were reported. The present results demonstrated that inactivation of RhoA, by overexpression of RhoGDP dissociation inhibitor (RhoGDI) as well as treatment with C3 exotoxin, attenuated SPP-stimulated PLD activity, supporting the involvement of RhoA in the stimulation of PLD activity by the bioactive lipid in C2C12 myoblasts. In addition, the effect of PKCalpha inhibitor G?6976 on the SPP-induced PLD activation in myoblasts, where RhoA function was inactivated, was consistent with a dual regulation of the enzyme through RhoA and PKCalpha. Interestingly, the subcellular distribution of PLD isoforms, RhoA and PKCalpha, in SPP-stimulated cells supported the view that the functional relationship between the two PLD regulators, demonstrated to occur in SPP signalling, represents a novel mechanism of regulation of specifically localized PLD.  相似文献   

10.
The muscarinic agonist carbachol stimulated phospholipase D (PLD) in rat submandibular gland (RSMG) ductal cells in a time and concentration-dependent manner. This effect was inhibited by chelation of extracellular calcium with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLD could also be activated by epinephrine and AlF(4)(-), two polyphosphoinositide-specific phospholipase C (PPI-PLC) activators, and by the phorbol ester o-tetradecanoylphorbol 13-acetate (TPA) which activates protein kinase C (PKC). Ionomycin and thapsigargin only slightly increased PLD activity. Ortho-vanadate, a tyrosine phosphatase inhibitor, also stimulated PLD activity. Both carbachol and o-vanadate increased the formation of inositol phosphates and the tyrosine phosphorylation of at least two proteins (55-60 and 120 kDa). Calphostin C (a PKC inhibitor), U73122 (a PPI-PLC inhibitor) and genistein (a tyrosine kinase inhibitor) blocked the activation of PLD, of PLC and the phosphorylation of tyrosyl residues in response to carbachol and vanadate. Taken together, these results suggest that rat submandibular gland ductal cells express a calcium-dependent PLD activity. This enzyme is regulated by carbachol via a PLC-PKC-tyrosine kinase pathway.  相似文献   

11.
We determined the phospholipase D (PLD) activity in rat vascular smooth muscle cells by the formation of phosphatidylethanol in cells prelabeled with [3H] myristic acid. The enzyme was markedly activated by a phorbol ester (TPA). Down regulation of protein kinase C (PKC) resulted in almost complete inhibition indicating PKC-dependent mechanism of its activation. Depletion of calcium by EGTA and TMB-8 caused 53% inhibition. Chelator-stable association of PKC to membrane by TPA was observed in the absence of extracellular Ca2+. The mitogenic peptide PDGF also caused a marked stimulation of PLD. These results indicate that PLD in vascular smooth muscle cells is stimulated by TPA through the activation of PKC both by calcium-dependent and independent mechanisms.  相似文献   

12.
Previous research showed that protein kinase C alpha (PKC alpha) translocated to the perinuclear region and activated phospholipase D1, but the mechanism involved was not clear. Here, we provide evidence that Phe 663 (the 10th amino acid from C-terminus) of PKC alpha is essential for its translocation. A point mutation (F663D) completely blocked PKC alpha's binding to and activation of phospholipase D1. Further studies showed that deletion of the C-terminal nine amino acids of PKC alpha did not alter its translocation to the perinuclear region but deletion of the C-terminal 10 amino acids and the F663D mutation abolished this translocation. The F663D mutant was found to be resistant to dephosphorylation, which might account for its inability to translocate to the perinuclear region and activate PLD1, since dephosphorylation of PKC alpha is required for its relocation from plasma membrane to the perinuclear region.  相似文献   

13.
Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%. In contrast, inactivation of proteins of the Ras family by Clostridium sordellii lethal toxin 1522 did not affect PLD activation. In parallel experiments, serum-induced PLD activation was sensitive to brefeldin A, but not to Ro 31-8220 and not to clostridial toxins. We conclude that, in astrocytes, the PLD isoform which is activated by phorbol ester requires PKC, ARF and Rho proteins for full activity and probably represents PLD1.  相似文献   

14.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

15.
Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCalpha at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase-dependent stimulation of Rac1, ARF6, and PKCalpha.  相似文献   

16.
Phospholipase D (PLD) and ADP-ribosylation factor 6 (ARF6) have been implicated in vesicular trafficking and rearrangement of the actin cytoskeleton. We have explored the co-localization of rat PLD1b and rat PLD2 with wild type and mutant forms of ARF6 in HeLa cells and studied their activation by ARF6 and the role of the actin cytoskeleton. GFP-tagged PLD1 had a similar pattern to multivesicular and late endosomes and the trans-Golgi apparatus, but not to other organelles. When wild type or dominant negative ARF6 and PLD1 or PLD2 were co-expressed, they had a similar localization in cytosolic particles and at the cell periphery. In contrast, dominant active ARF6 caused cell shrinkage and had a similar localization with PLD1 and PLD2 in dense structures, containing the trans-Golgi apparatus and actin. Disruption of the actin cytoskeleton with cytochalasin D did not induce the formation of these structures. To determine, if ARF6 selectively activated PLD1 or PLD2, wild type and mutant forms of the ARF isoform were transfected together with PLD1 or PLD2. Wild type ARF6 did not affect either PLD isozyme, but dominant active ARF6 selectively activated PLD2 and dominant negative ARF6 selectively inhibited PLD2. In contrast, dominant active ARF1 or Rac1 stimulated both PLD isozymes but the ARF1 effect on PLD2 was very small. Cytochalasin D did not affect the activation of PLD by phorbol ester. The localizations of PLD and ARF6 were also analyzed by fractionation after methyl-beta-cyclodextrin extraction to deplete cholesterol. The results showed that all PLD isoforms and ARF6 mutants existed in the membrane fraction, but only wild type ARF6 was dependent on the presence of cholesterol. These experiments showed that wild type ARF6 had a similar location with PLD isoforms on cell staining, but it did not colocalize with PLD isoforms in fractionation experiments. It is proposed that activated ARF6 translocates to the cholesterol independent microdomain and then activates PLD2 there. It is further concluded that PLD2 is selectively activated by ARF6 in vivo and that disruption of the actin cytoskeleton does not affect this activation.  相似文献   

17.
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid that inhibits T lymphocyte activation, has been shown to stimulate phospholipase D (PLD) activity in stimulated human peripheral blood mononuclear cells (PBMC). To elucidate the mechanisms underlying the DHA-induced PLD activation, we first characterized the PLD expression pattern of PBMC. We show that these cells express PLD1 and PLD2 at the protein and mRNA level and are devoid of oleate-dependent PLD activity. DHA enrichment of PBMC increased the DHA content of cell phospholipids, which was directly correlated with the extent of PLD activation. The DHA-induced PLD activation was independent of conventional protein kinase C but inhibited by brefeldin A, which suggests ADP-ribosylation factor (ARF)-dependent mechanism. Furthermore, DHA enrichment dose-dependently stimulated ARF translocation to cell membranes. Whereas 50% of the guanosine 5'-3-O-(thio)triphosphate plus ARF-dependent PLD activity and a substantial part of PLD1 protein were located to the detergent-insoluble membranes, so-called rafts, of non-enriched PBMC, DHA treatment strongly displaced them toward detergent-soluble membranes where ARF is present. Collectively, these results suggest that the exclusion of PLD1 from lipid rafts, due to their partial disorganization by DHA, and its relocalization in the vicinity of ARF, is responsible for its activation. This PLD activation might be responsible for the immunosuppressive effect of DHA because it is known to transmit antiproliferative signals in lymphoid cells.  相似文献   

18.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

19.
20.
Cellular response to G(q)-linked agonists is shaped by regulatory inputs which determine signal strength and duration. Stimulation of phospholipase C-β (PLC-β) lipase activity results in an increase in the levels of diacylglycerol (DAG) and activation of protein kinase C (PKC) activity. PKC has been implicated in the feedback regulation of G(q) signaling through actions on PLC-β and phospholipase D (PLD) lipase activity. As PKC activity is modulated by multiple layers of regulation, the physiological impact of PKC on G(q) signaling is unclear. PKC signaling can be terminated by diacylglycerol kinases (DGKs) which are regulated in a cell-specific manner. The present studies investigated the contribution of the ubiquitously expressed DGKζ isoform in the regulation of PKC signaling and G(q) response in transfected COS-7 cells. Genetic depletion of DGKζ protein with antisense oligonucleotides dramatically reduced DAG metabolism. The sustained increase in PKC signaling was associated with a pronounced inhibition of carbachol-stimulated lipase activity in cells co-transfected with m1 muscarinic receptor, Gα(q) and either with or without PLC-β(1). The data also reveal that sustained activation of PKC alone does not increase cellular PLD1 activity. Therefore, G(12)-activated RhoA is physiologically important for adequate stimulation of PLD1 activity. These data show that the impact of PKC on G(q) signal transduction is determined by the background of cell-specific processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号