首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total DNA was extracted formSecale cereale L. cv. ‘Petkus’ and labeled with biotin-11-dUPT. Labeled rye DNA and non-labeled wheat DNA in a mixture of 1∶1 were used as a probe on chromosome preparations of Welsh triticale and Kavkaz wheat, a wheat translocation stock. Hybridization of denatured probe and chromosomes took place overnight at 37°C in the presence of 10% (w/v) dextran sulfate, 50% (v/v) formamide, 10 mM PIPES, 0.1 mMEDTA and 0.3 M NaC1. Biotin-labeled rye DNA was detected using streptavidin-horseradish peroxidase conjugate. Staining was made with diaminobenzidine tetrahydrochloride and hydrogen peroxide. Observations made on Giesma counter-stained slides indicated that the rye chromosomes in Welsh triticale and the two short arms of a pair of satellite chromosomes (1RS) in Kavkaz wheat were preferentially labeled. Hybridization signals were seen as dark brown to bluish black in color. The technique described above is simple. It does not require the isolation of a species-specific probe. Itallows rapid identification of hybrids and/or chromosome translocations in wide hybridizations.  相似文献   

2.
Two rye genome-specific random amplified polymorphic DNA (RAPD) markers were identified for detection of rye introgression in wheat. Both markers were amplified in all of the tested materials that contained rye chromatin such as rye, hexaploid triticale, wheat-rye addition lines, and wheat varieties with 1BL.1RS translocation. Two cloned markers, designated pSc10C and pSc20H, were 1012 bp and 1494 bp, respectively. Sequence analysis showed that both pSc10C and pSc20H fragments were related to retrotransposons, ubiquitously distributed in plant genomes. Using fluorescence in situ hybridization (FISH), probe pSc10C was shown to hybridize predominantly to the pericentromeric regions of all rye chromosomes, whereas probe pSc20H was dispersed throughout the rye genome except at telomeric regions and nucleolar organizing regions. The FISH patterns showed that the two markers should be useful to select or track all wheat-rye translocation lines derived from the whole arms of rye chromosomes, as well as to characterize the positions of the translocation breakpoints generated in the proximal and distal regions of rye arms.  相似文献   

3.
We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.  相似文献   

4.
Nucleolar activity was analyzed in wheat (Triticum sp.), rye (Secale cereale) and several types of wheat-rye derivatives using a modified, highly reproducible, silver staining procedure (Lacadena et al. 1984). A comparative analysis of the nucleolar organizer regions (NORs) of somatic metaphase chromosomes was made by phase contrast, C-banding, and silver staining. The frequency distribution of the number of nucleoli visualized at interphase by silver staining was also used to infer the activity of NORs. The results agree quite well with data from in situ hybridization reported by other authors. The behavior of euploid, ditelosomic and nulli-tetrasomic plants of common wheat showed the relative nucleolar activity of the four organizer chromosomes to be: 6B > 1B > 5D > 1A. — Several types of wheat-rye derivatives were analyzed: interspecific hybrid, triticale, addition and substitution lines, and plants with the genome constitutions, AABBDR, ABDR + 5D, ABRR, and ABRRR. In all cases the nucleolar organizer chromosome 1R of rye was suppressed by the presence of wheat chromosomes.  相似文献   

5.
 Chromosome painting enabled the study of homologous chromosome behaviour prior to and during meiosis. Total genomic DNA from rye, used as a probe for in situ hybridization, identified the rye chromosome arm in a wheat-rye translocation line (T5AS·5RL) at meiotic prophase and the preceding interphase. Accurate staging of the development of the meiocytes was attained by parallel studies of chromatin morphology, nucleolar behaviour and synaptonemal complex formation in electron microscopy thin sections and silver-stained surface spreads. Three stages of pairing were identified for the large cereal genomes that are organized in a Rabl configuration: first, cognition occurs during the long interphase before leptotene, bringing the homologous chromosome domains into close proximity and possibly starting at the centromere; second, homologous chromosome segments align at late leptotene; and third, zygotene synapsis initiates near the telomere, although it was also observed to occur near the centromere. A pairing model is proposed for wheat, with a genome size of 17000 Mbp, that shows prallels to and notable differences from yeast and mammalian models of meiosis. Received: 25 January 1997 / Revision accepted: 14 July 1997  相似文献   

6.
Induction of small-segment-translocation between wheat and rye chromosomes   总被引:19,自引:0,他引:19  
A new approach to produce wheat-rye translocation, based on the genetic instability caused by monosomic addition of rye chromosome in wheat, is described. 1 283 plants from the selfed progenies of monosomic addition lines with single chromosome of inbred rye line R12 and complete chromosome complement of wheat cultivar Mianyang 11 were cytologically analyzed on a plant-by-plant basis by the improved C-banding technique. 63 of the plants, with 2n = 42, were found containing wheat-rye translocation or substitution, with a frequency of 4. 91% . Compared with the wheat parent, other 32 plants with 2n = 42 exhibited obvious phenotypic variation, but their com-ponent of rye chromosome could not be detected using the C-banding technique. In situ hybridization with a biotin-la-beled DNA probe was used to detect rye chromatin and to determine the insertion sites of rye segments in the wheat chromosomes. In 20 out of the 32 variant wheat plants, small segments of rye chromosomes were found being inserted into dif  相似文献   

7.
A. Bernardo  N. Jouve 《Genetica》1988,77(2):85-88
In a cytological analysis of the meiotic behaviour in PMCs of five hybrids between hexaploid triticale and durum wheat, Triticum turgidum L., chromosome association at meiotic first metaphase and the behaviour of rye univalents at first anaphase were analyzed. The chromosomes of the B genome, chromosomes 4A and 7A (disomic condition), and the seven rye chromosomes, could be distinguished by their C-banding pattern. No wheat-rye paring was detected at metaphase I. Rye univalents were observed as laggards which disjoined either predominantly equationaly (2R, 3R, 4R, 5R and 7R) or predominantly reductionaly (1R and 6R). Misdivision occurred in up to 3% of rye univalents.  相似文献   

8.
Newly synthesized wheat-rye allopolyploids, derived from Triticum aestivum Mianyang11 × S. cereale Kustro, were investigated by sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) using rye tandem repeat pSc200 and rye genomic DNA as probes, respectively, over the first, second and third allopolyploid generations. FISH signals of pSc200 could be observed at both telomeres/subtelomeres of all 14 chromosomes of the parental rye. In the first allopolyploid generation, there were ten rye chromosomes bearing FISH signals at both telomeres/subtelomeres and four rye chromosomes bearing FISH signals at only one telomere/subtelomere. However, in the second and the third allopolyploid generations, there were 12 rye chromosomes bearing FISH signals at both telomeres/subtelomeres and 2 rye chromosomes bearing FISH signals at only one telomere/subtelomere. Rye telomeric segments were transferred to the centromeric region of wheat chromosomes in some cells and small segments derived from non-telomeric regions of rye chromosome were transferred to the telomeric region of wheat chromosomes in some other cells. These observations indicated that the rye telomeric/subtelomeric region was unstable in newly synthesized wheat-rye allopolyploids and allopolyploidization was accompanied by rapid inter/intra-genomic exchange. The inter-genomic exchange may have occurred in somatic cells.  相似文献   

9.
In situ hybridization was carried out to somatic cells of hexaploid Triticale “Badger”, lB/IR translocation line “Ning 8026” and IR(ID) substitution line “84056-1-36-1” using biotin-labelled total rye genomic DNA and wheat rDNA as probes, the results were as follows: 1. The probe containing the total genomic DNA from rye hybridized to the entire length of all rye chromosomes, as a result of the formation of a brown precipitate over the sites of hybridization, the rye chromosomes could be distinguished from wheat chromosomes counterstained by Wright’s solution, the distinguishable appearance of the wheat and rye chromosomes resulted in an efficient method of detecting rye chromosome or segments in wheat. 2. When the probe PTA 71 containing wheat ribosomal DNA was used to hybridize to somatic chromosomes of "Badger" and “84056-1-36-1”, six signals in “Badger” and eight in “84056-1-36-1” were observed on lB, 6B, 1R and SD, among which lB and 6B showed large in situ signals corresponding to many copies of the genes. 3. The expression behavior of wheat rDNA was found in interphase cells by in situ hybridization.  相似文献   

10.
Hao M  Luo J  Yang M  Zhang L  Yan Z  Yuan Z  Zheng Y  Zhang H  Liu D 《Génome》2011,54(12):959-964
The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat-wheat associations was higher in CSph1b×rye than in KL×rye. However, frequencies of wheat-rye and rye-rye associations were higher in KL×rye than in CSph1b×rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat-wheat associations were much more frequent than wheat-rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.  相似文献   

11.
Six doubled-haploid (DH) lines, derived by anther culture from octoploid triticale x wheat hybrids, were characterized using cytological, biochemical and molecular techniques. Lines varied in their wheat and rye genome composition, and were either wheat-rye chromosome multiple addition lines or had spontaneous substitutions and/or wheat-rye translocations. Most of the lines contained a pair of 4R chromosomes, whereas 1R or 7R were present in others. The results are similar to those previously obtained with hexaploid triticale x wheat crosses and indicate that it is possible to produce alien (wheat/rye) addition, substitution, and translocation lines directly from the anther culture of intergeneric hybrids.  相似文献   

12.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

13.
Two substitution lines, designated as 930498 and 930483, and one addition line, designated as 930029, via Fo immature embryo culture of Triticum aestivum x octoploid triticale ( x Triti-cosecale Wittmack) were identified. Fluorescence in situ hybridization (FISH) using total genomic DNA of rye ( Secale cereale L. ) as probe corroborated the existence of rye chromosomes, further confirmed through chromosome paring at meiotic metaphase 1, C-banding and glutenin SDS- PAGE. The results demonstrated that the two substitution lines are ID/IR, and the addition line is also IR addition. Rye chromosomes that are distinct to the red-colored wheat chromosomes appear yellow-green at mitotic metaphase after FISH.  相似文献   

14.
Hexaploid triticale (×Triticosecale Wittmack) lines were examined using molecular markers and the hybridization in situ technique. Triticale lines were generated based on wheat varieties differing by the Vrn gene systems and the earing times. Molecular analysis was performed using Xgwm and Xrms microsatellite markers with the known chromosomal localization in the common wheat Triticum aestivum, and rye Secale cereale genomes. Comparative molecular analysis of triticale lines and their parental forms showed that all lines contained A and B genomes of common wheat and also rye homoeologous chromosomes. In the three lines the presence of D genome markers, mapped to the chromosomes 2D and 7D, was demonstrated. This was probably the consequence of the translocations of homoeologous chromosomes from wheat genomes, which took part during the process of triticale formation. The data obtained by use of genomic in situ hybridization supported the data of molecular genetic analysis. In none of the lines wheat-rye translocations or recombinations were observed. These findings suggest that the change of the period between the seedling appearance and earing time in triticale lines compared to the initial wheat lines, resulted from the inhibitory effect of rye genome on wheat vernalization genes.  相似文献   

15.
Radiation-induced wheat-rye chromosome translocation lines resistant to Hessian fly, Mayetiola destructor (say), were analyzed by in situ hybridization using total genomic and highly repetitive rye DNA probes pSc119 and pSc74. In situ hybridization analysis revealed the exact locations of the translocation breakpoints and allowed the estimation of the sizes of the transferred rye segments. T6BS·6BL-6RL and T4BS· 4BL-6RL are terminal translocations with either most of the complete long arm of rye chromosome 6R or only the distal 57% of the 6RL arm attached to the long arms of wheat chromosomes 6B and 4B, respectively. The breakpoint in T6BS·6BL-6RL is located at a fraction length (FL) of 0.11 in the long arm of T6BS 6BL-6RL and at FL 0.46 in the long arm of T4BS·4BL-6RL. Ti4AS·4AL-6RL-4AL is an intercalary translocation with the breakpoint located at FL 0.06 in the long arm of wheat chromosome 4A. The inserted 6RL segment, with the Hessian fly resistance gene, has a size of 0.7 m, and is the smallest and, so far, the first radiation-induced intercalary translocation identified in wheat.by R. Apples  相似文献   

16.
威岭栽培黑麦抗白粉病特性导入小麦的研究   总被引:6,自引:0,他引:6  
威岭黑麦(Weiling rye)是一个高抗白粉病(Erysiphe gramininis f.sp.tritici)的中国矮杆栽培黑麦。以Weiling rye作为白粉病抗源,高感白粉病小麦栽培品种My8443为母本,从Weiling rye与小麦My8443远缘杂交的BC_2F_6后代中鉴定出一个新的小麦-黑麦易位系No.147,以实现威岭黑麦白粉病抗性向普通栽培小麦的转移。No.147及其亲本的抗白粉病特性通过苗期和成株期优势生理小种混合接种和室内单生理小种接种鉴定,改良的染色体C-分带和基因组原位杂交技术(GISH。Ge- nomic in situ hybridization)被用于鉴定小麦和黑麦的染色质,酸性聚丙烯酰胺凝胶电泳(APAGE)被用于鉴定黑麦醇溶蛋白1RS特异条带,11个黑麦种属特异性标记SCM(Secale cereale marker)引物被用于扩增分析黑麦特异性简单重复序列(SSR)。研究结果证实No.147是一个新的高抗白粉病的1BL/1RS小麦-黑麦染色体易位系,并对其产生的细胞学机制进行了分析。论文对中国栽培黑麦抗性基因资源的利用和该易位系在小麦遗传育种改良中的利用价值进行了讨论。  相似文献   

17.
In situ hybridization with cloned, repetitive DNA probes andtotal genomic DNA enables the parental origin of all chromosomesto be established in metaphases of triticale tritordeum F1hybrids (2n=6x=42). Nuclei contain seven chromosomes of Hordeumchilense origin, seven from Secale cereale and 28 of wheat origin.When used as a probe, total genomic rye DNA labelled the ryechromosomes strongly and uniformly along their lengths, withbrighter regions coincident with the terminal heterochromatin.The probe labelled the wheat-origin chromosomes weakly and wasalmost undetectable on the H. chilense-origin chromosomes. Incontrast, under the same conditions, H. chilense DNA hybridizedstrongly to the H. chilense- and, with intermediate strength,to the S. cereale-origin chromosomes, excluding the subtelomericheterochromatin: it hybridized only weakly to the wheat chromosomes,in some experiments revealing characteristic bands on wheatchromosomes. Cloned repetitive DNA probes from rye and H. chilensewere used as probes to identify the linkage groups of all oftheir own-species chromosomes. Analysis of hybridization patternsof various probes to prophase and interphase nuclei indicatedthat there are many non-random features in the localizationof both repetitive DNA and whole chromosomes, although generalpatterns of nuclear organization have yet to emerge. Both theparticular lines used and the techniques developed here arelikely to be valuable for production and characterization ofplant breeding material. Key words: In situ hybridization, triticale, cytogenetics, plant breeding, Hordeum chilense  相似文献   

18.
孙仲平  王占斌  徐香玲  李集临 《遗传学报》2004,31(11):1268-1274
将中国春-黑麦(1R-7R)二体附加系与中国春-2C(Aegilops cylindrica)二体附加系杂交,获得F1,对F1体细胞染色体进行C分带鉴定和花粉母细胞减数分裂行为的观察与分析,发现减数分裂行为异常。对自交获得的430株F2进行单株染色体C分带和荧光原位分子杂交鉴定,检测到易位、缺失、等臂染色体、双着丝点染色体等染色体畸变类型。此外还检测到2C与小麦2A、2B、2D染色体的二体或单体自发代换系。杂交F。染色体畸变的规律与频率如下:研究共得到含黑麦染色体的变异22株,变异频率为5,1%。其中含黑麦染色体的易位系为10株,占2,3%;缺失12株,占2.79%;黑麦的等臂染色体3株,占O.7%。易位染色体既有含小麦着丝点的(大部分),也含有黑麦着丝点的(仅1例)。黑麦的染色体畸变中,发生于不同同祖群的频率不同,1R为5个,2R为3个;3R为1个;4R为3个;5R为6个;6R为4个。易位多为端部易位。共鉴定出小麦的缺失系54株,其中A基因组有27个,占6.27%;B基因组有20个,占4,65%;D基因组有7个,占1.66%。对杀配子染色体对小麦及黑麦不同同祖群染色体作用的差异性及作用特点进行了探讨。  相似文献   

19.
In situ hybridization with total genomic DNA (GISH) has become a powerful tool in characterization of alien introgressions in wheat. With recent simplification it can now be used in large scale screening for new chromosome constructs. Its level of resolution in routine applications was tested on sets of recombined wheat-rye chromosomes with genetically determined positions of the translocation breakpoints. The resolution level of GISH visualized by an enzymatic color reaction was much lower than that of GISH with fluorescent probes but both techniques failed to reveal the presence of some distally located breakpoints. The limits of resolution for the two methods were at least 9.8 and 3.5 cM of the relative genetic lengths of chromosome arms, respectively, in configurations with proximal rye and terminal wheat segments when rye DNA was used as a probe. When wheat DNA was used as a probe, a terminal wheat segment estimated to be ca. 1.6 cM in length could not be visualized. An example of induced recombination between a chromosome of Agropyron elongatum and wheat illustrates that these resolution limits of GISH may hamper isolation of critical translocation breakpoints in a chromosome engineering effort.  相似文献   

20.
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号