首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background

Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.

Methods

Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.

Results

RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.

Conclusions

RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.  相似文献   

2.
K Ni  S Li  Q Xia  N Zang  Y Deng  X Xie  Z Luo  Y Luo  L Wang  Z Fu  E Liu 《PloS one》2012,7(7):e41104

Background

Regulatory T cells (Treg cells), which are essential for regulation of immune response to respiratory syncytial virus (RSV) infection, are promoted by pharyngeal commensal pneumococcus. The effects of pharyngeal microflora disruption by antibiotics on airway responsiveness and relative immune responses after RSV infection have not been clarified.

Methods

Female BALB/c mice (aged 3 weeks) were infected with RSV and then treated with either oral antibiotics or oral double distilled water (ddH2O) from 1 d post infection (pi). Changes in pharyngeal microflora were analyzed after antibiotic treatment for 7 d and 14 d. At 8 d pi and 15 d pi, the inflammatory cells in bronchoalveolar lavage fluid (BALF) were investigated in combination with tests of pulmonary histopathology, airway hyperresponsiveness (AHR), pulmonary and splenic Treg cells responses. Pulmonary Foxp3 mRNA expression, IL-10 and TGF-β1 in BALF and lung homogenate were investigated at 15 d pi. Ovalbumin (OVA) challenge was used to induce AHR after RSV infection.

Results

The predominant pharyngeal commensal, Streptococcus, was cleared by antibiotic treatment for 7 d. Same change also existed after antibiotic treatment for 14 d. After RSV infection, AHR was promoted by antibiotic treatment at 15 d pi. Synchronous decreases of pulmonary Treg cells, Foxp3 mRNA and TGF-β1 were detected. Similar results were observed under OVA challenge.

Conclusions

After RSV infection, antibiotic treatment cleared pharyngeal commensal bacteria such as Streptococcus, which consequently, might induce AHR and decrease pulmonary Treg cells.  相似文献   

3.
4.

Background

Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F).

Methods

Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection.

Results

The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8+ T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8+ T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2.

Conclusions

Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8+ T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0244-0) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Respiratory syncytial virus (RSV) is the leading cause of respiratory infections in children, elderly, and immunocompromised individuals. Severe infection is associated with short- and long-term morbidity including pneumonia, recurrent wheezing, and abnormal pulmonary function, and several lines of evidence indicate that impaired adaptive immune responses during infection are critical in the pathophysiology of RSV-mediated disease. Myeloid Dendritic cells (mDCs) play a pivotal role in shaping antiviral immune responses in the respiratory tract; however, few studies have examined the interactions between RSV and individual mDC subsets. In this study, we examined the effect of RSV on the functional response of primary mDC subsets (BDCA-1+ and BDCA-3+) isolated from peripheral blood.

Methods

BDCA-1+ and BDCA-3+ mDCs were isolated from the peripheral blood of healthy adults using FACS sorting. Donor-matched BDCA-1+ and BDCA-3+ mDCs were infected with RSV at a multiplicity of infection (MOI) of 5 for 40 hours. After infection, cells were analyzed for the expression of costimulatory molecules (CD86, CD80, and PD-L1), cytokine production, and the ability to stimulate allogenic CD4+ T cell proliferation.

Results

Both BDCA-1+ and BDCA-3+ mDCs were susceptible to infection with RSV and demonstrated enhanced expression of CD86, and the inhibitory costimulatory molecules CD80 and PD-L1. Compared to BDCA-3+ mDCs, RSV-infected BDCA-1+ mDC produced a profile of cytokines and chemokines predominantly associated with pro-inflammatory responses (IL-1β, IL-6, IL-12, MIP-1α, and TNF-α), and both BDCA-1+ and BDCA-3+ mDCs were found to produce IL-10. Compared to uninfected mDCs, RSV-infected BDCA-1+ and BDCA-3+ mDCs demonstrated a reduced capacity to stimulate T cell proliferation.

Conclusions

RSV infection induces a distinct pattern of costimulatory molecule expression and cytokine production by BDCA-1+ and BDCA-3+ mDCs, and impairs their ability to stimulate T cell proliferation.The differential expression of CD86 and pro-inflammatory cytokines by highly purified mDC subsets in response to RSV provides further evidence that BDCA-1+ and BDCA-3+ mDCs have distinct roles in coordinating the host immune response during RSV infection. Findings of differential expression of PD-L1 and IL-10 by infected mDCs, suggests possible mechanisms by which RSV is able to impair adaptive immune responses.  相似文献   

6.
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-γ)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.  相似文献   

7.

Background

A subset of the virus-specific CD8+ cytotoxic T lymphocytes (CTL) isolated from the lungs of mice infected with human respiratory syncytial virus (RSV) is impaired in the ability to secrete interferon γ (IFNγ), a measure of functionality. It was suggested that the impairment specifically suppressed the host cellular immune response, a finding that could help explain the ability of RSV to re-infect throughout life.

Results

To determine whether this effect is dependent on the virus, the route of infection, or the type of infection (respiratory, disseminated, or localized dermal), we compared the CTL responses in mice following intranasal (IN) infection with RSV or influenza virus or IN or intradermal (ID) infection with vaccinia virus expressing an RSV CTL antigen. The impairment was observed in the lungs after IN infection with RSV, influenza or vaccinia virus, and after a localized ID infection with vaccinia virus. In contrast, we observed a much higher percentage of IFNγ secreting CD8+ lymphocytes in the spleens of infected mice in every case.

Conclusion

The decreased functionality of CD8+ CTL is specific to the lungs and is not dependent on the specific virus, viral antigen, or route of infection.  相似文献   

8.
The respiratory syncytial virus (RSV) causes potentially fatal lower respiratory tract infection in infants. The molecular mechanism of RSV infection is unknown. Our data show that RSV colocalizes with intercellular adhesion molecule-1 (ICAM-1) on the HEp-2 epithelial cell surface. Furthermore, a neutralizing anti-ICAM-1 mAb significantly inhibits RSV infection and infection-induced secretion of proinflammatory chemokine RANTES and mediator ET-1 in HEp-2 cells. Similar decrease in RSV infection is also observed in A549, a type-2 alveolar epithelial cell line, and NHBE, the normal human bronchial epithelial cell line when pretreated with anti-ICAM-1 mAb prior to RSV infection. Incubation of virus with soluble ICAM-1 also significantly decreases RSV infection of epithelial cells. Binding studies using ELISA indicate that RSV binds to ICAM-1, which can be inhibited by an antibody to the fusion F protein and also the recombinant F protein can bind to soluble ICAM-1, suggesting that RSV interaction with ICAM-1 involves the F protein. It is thus concluded that ICAM-1 facilitates RSV entry and infection of human epithelial cells by binding to its F protein, which is important to viral replication and infection and may lend itself as a therapeutic target.  相似文献   

9.

Background

Respiratory syncytial virus (RSV) infection in infants causes significant morbidity and is the strongest risk factor associated with asthma. Metabolites, which reflect the interactions between host cell and virus, provide an opportunity to identify the pathways that underlie severe infections and asthma development.

Objective

To study metabolic profile differences between infants with RSV infection, and human rhinovirus (HRV) infection, and healthy infants. To compare infant metabolic differences between children who do and do not wheeze.

Methods

In a term birth cohort, urine was collected while healthy and during acute viral respiratory infection with RSV and HRV. We used 1H-NMR to identify urinary metabolites. Multivariate and univariate statistics were used to discriminate metabolic profiles of infants with either RSV ARI, or HRV ARI, and healthy infants. Multivariable logistic regression was used to assess the association of urine metabolites with 1st-, 2nd-, and 3rd-year recurrent wheezing.

Results

Several metabolites in nicotinate and nicotinamide metabolism pathways were down-regulated in infants with RSV infection compared to healthy controls. There were no significant differences in metabolite profiles between infants with RSV infection and infants with HRV Infection. Alanine was strongly associated with reduced risk of 1st-year wheezing (OR 0.18[0.0, 0.46]) and 2nd-year wheezing (OR 0.31[0.13, 0.73]), while 2-hydroxyisobutyric acid was associated with increased 3rd-year wheezing (OR 5.02[1.49, 16.93]) only among the RSV infected subset.

Conclusion

The metabolites associated with infant RSV infection and recurrent-wheezing are indicative of viral takeover of the cellular machinery and resources to enhance virulence, replication, and subversion of the host immune-response, highlighting metabolic pathways important in the pathogenesis of RSV infection and wheeze development.
  相似文献   

10.
目的通过对503例急性呼吸道感染患儿进行7种常见病毒[流感病毒A、B型(IVA、IVB),腺病毒(ADV),副流感病毒1、2、3型(PIV1、PIV2、PIV3)及呼吸道合胞病毒(RSV)]的检测,了解本地区2013年急性呼吸道感染患儿的病毒感染状况。方法应用免疫荧光法对503例急性呼吸道感染患儿的咽拭子进行7种常见病毒的检测。结果 503例患儿中有55例检出病毒阳性,总阳性率为10.93%,均为单一病毒感染。7种常见病毒中,RSV的感染率最高,为76.36%。在各年龄组中,〈1岁组的病毒检出率最高,为29.41%,随着年龄的增长,检出率逐渐降低。从季节分布来看,春季的感染率最高,为23.08%,其次为冬季,感染率10.13%。结论 RSV是2013年本地区儿童急性呼吸道感染的主要病毒,〈1岁组患儿的病毒检出率最高,春季为感染的高发季节。  相似文献   

11.

Background

There is little information that describe the burden of respiratory syncytial virus (RSV) associated disease in the tropical African outpatient setting.

Methods

We studied a systematic sample of children aged <5 years presenting to a rural district hospital in Kenya with acute respiratory infection (ARI) between May 2002 and April 2004. We collected clinical data and screened nasal wash samples for RSV antigen by immunofluorescence. We used a linked demographic surveillance system to estimate disease incidence.

Results

Among 2143 children tested, 166 (8%) were RSV positive (6% among children with upper respiratory tract infection and 12% among children with lower respiratory tract infection (LRTI). RSV was more likely in LRTI than URTI (p<0.001). 51% of RSV cases were aged 1 year or over. RSV cases represented 3.4% of hospital outpatient presentations. Relative to RSV negative cases, RSV positive cases were more likely to have crackles (RR = 1.63; 95% CI 1.34–1.97), nasal flaring (RR = 2.66; 95% CI 1.40–5.04), in-drawing (RR = 2.24; 95% CI 1.47–3.40), fast breathing for age (RR = 1.34; 95% CI 1.03–1.75) and fever (RR = 1.54; 95% CI 1.33–1.80). The estimated incidence of RSV-ARI and RSV-LRTI, per 100,000 child years, among those aged <5 years was 767 and 283, respectively.

Conclusion

The burden of childhood RSV-associated URTI and LRTI presenting to outpatients in this setting is considerable. The clinical features of cases associated with an RSV infection were more severe than cases without an RSV diagnosis.  相似文献   

12.

Background

Environmental exposure to respiratory syncytial virus (RSV) is a leading cause of respiratory infections in infants, but it remains unknown whether this infection is transmitted transplacentally from the lungs of infected mothers to the offspring. We sought to test the hypothesis that RSV travels from the respiratory tract during pregnancy, crosses the placenta to the fetus, persists in the lung tissues of the offspring, and modulates pre- and postnatal expression of growth factors, thereby predisposing to airway hyperreactivity.

Methodology

Pregnant rats were inoculated intratracheally at midterm using recombinant RSV expressing red fluorescent protein (RFP). Viral RNA was amplified by RT-PCR and confirmed by sequencing. RFP expression was analyzed by flow cytometry and viral culture. Developmental and pathophysiologic implications of prenatal infection were determined by analyzing the expression of genes encoding critical growth factors, particularly neurotrophic factors and receptors. We also measured the expression of key neurotransmitters and postnatal bronchial reactivity in vertically infected lungs, and assessed their dependence on neurotrophic signaling using selective biological or chemical inhibition.

Principal Findings

RSV genome was found in 30% of fetuses, as well as in the lungs of 40% of newborns and 25% of adults. RFP expression was also shown by flow cytometry and replicating virus was cultured from exposed fetuses. Nerve growth factor and its TrkA receptor were upregulated in RSV- infected fetal lungs and co-localized with increased cholinergic innervation. Acetylcholine expression and smooth muscle response to cholinergic stimulation increased in lungs exposed to RSV in utero and reinfected after birth, and blocking TrkA signaling inhibited both effects.

Conclusions/Significance

Our data show transplacental transmission of RSV from mother to offspring and persistence of vertically transmitted virus in lungs after birth. Exposure to RSV in utero is followed by dysregulation of neurotrophic pathways predisposing to postnatal airway hyperreactivity upon reinfection with the virus.  相似文献   

13.

Background

Neutrophils have been shown to play a role in host defence against highly virulent and mouse-adapted strains of influenza virus, however it is not clear if an effective neutrophil response is an important factor moderating disease severity during infection with other virus strains. In this study, we have examined the role of neutrophils during infection of mice with influenza virus strain HKx31, a virus strain of the H3N2 subtype and of moderate virulence for mice, to determine the role of neutrophils in the early phase of infection and in clearance of influenza virus from the respiratory tract during the later phase of infection.

Methods

The anti-Gr-1 monoclonal antibody (mAb) RB6-8C5 was used to (i) identify neutrophils in the upper (nasal tissues) and lower (lung) respiratory tract of uninfected and influenza virus-infected mice, and (ii) deplete neutrophils prior to and during influenza virus infection of mice.

Results

Neutrophils were rapidly recruited to the upper and lower airways following influenza virus infection. We demonstrated that use of mAb RB6-8C5 to deplete C57BL/6 (B6) mice of neutrophils is complicated by the ability of this mAb to bind directly to virus-specific CD8+ T cells. Thus, we investigated the role of neutrophils in both the early and later phases of infection using CD8+ T cell-deficient B6.TAP-/- mice. Infection of B6.TAP-/- mice with a low dose of influenza virus did not induce clinical disease in control animals, however RB6-8C5 treatment led to profound weight loss, severe clinical disease and enhanced virus replication throughout the respiratory tract.

Conclusion

Neutrophils play a critical role in limiting influenza virus replication during the early and later phases of infection. Furthermore, a virus strain of moderate virulence can induce severe clinical disease in the absence of an effective neutrophil response.  相似文献   

14.
15.
Human alveolar macrophages (AM) are susceptible to infection with respiratory syncytial virus (RSV), but the infection is abortive after the initial cycles of virus replication. We have investigated if RSV infection of AM results in the production of cytokines TNF, IL-6, and IL-8, all of which may modulate inflammatory and immune responses to the virus, as well as may directly protect respiratory epithelial cells against spread of infection. Within 1 h after interaction with RSV, increased mRNA levels were found for all three cytokines. Peak expression of the mRNAs occurred at 3 to 6 h. The virus most effectively induced TNF mRNA expression greater than IL-6 mRNA greater than IL-8 mRNA, as compared to cytokine mRNA expression induced by bacterial endotoxin. Inactivated virus was almost as effective as live virus in inducing and maintaining increased IL-6 and IL-8 mRNA over 16 h, whereas live infectious RSV was necessary for maintaining TNF mRNA expression over the same time. Protein concentrations of the different cytokines in the supernatants of infected AM reflected the increased levels of mRNA in the cells. Despite the high levels of cytokines with possible antiviral activity (TNF and IL-6) in the AM supernatants, neither supernatants nor rTNF when added to bronchial epithelial cells protected them from infection with RSV. However, TNF, IL-1, and RSV, but not IL-6, induced IL-8 and IL-6 mRNA expression by the bronchial epithelial cells suggesting that cytokines produced by RSV-infected AM may be more important in modulating the inflammatory response in infection than directly interfering with virus infection/replication of airway epithelium.  相似文献   

16.
There is substantial epidemiological evidence supporting the concept that respiratory syncytial virus (RSV) lower respiratory tract infection in infancy may be linked to the development of reactive airway disease (RAD) in childhood. However, much less is known concerning the mechanisms by which this self-limiting infection leads to airway dysfunction that persists long after the virus is cleared from the lungs. A better understanding of the RSV-RAD link may have important clinical implications, particularly because prevention of RSV lower respiratory tract infection may reduce the occurrence of RAD later in life. Among the mechanisms proposed to explain the chronic sequelae of RSV infection is the interaction between the subepithelial neural network of the airway mucosa and the cellular effectors of inflammatory and immune responses to the virus. The body of clinical literature linking RSV and RAD is reviewed herein, as are the cellular and molecular mechanisms of neuroimmune interactions and neural remodeling that may underlie this link, and the possibility that preventing the infection may result in a decreased incidence of its chronic sequelae.  相似文献   

17.
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants and the elderly. While the primary infection is the most serious, reinfection of the upper airway throughout life is the rule. Although relatively little is known about either RSV infection of the upper respiratory tract or host mucosal immunity to RSV, recent literature suggests that RSV is the predominant viral pathogen predisposing to bacterial otitis media (OM). Herein, we describe mouse and chinchilla models of RSV infection of the nasopharynx and Eustachian tube. Both rodent hosts were susceptible to RSV infection of the upper airway following intranasal challenge; however, the chinchilla proved to be more permissive than the mouse. The chinchilla model will likely be extremely useful to test the role of RSV in bacterial OM and the efficacy of RSV vaccine candidates designed to provide mucosal and cytotoxic T-lymphocyte immunity. Ultimately, we hope to investigate the relative ability of these candidates to potentially protect against viral predisposal to bacterial OM.  相似文献   

18.
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants. Reduced numbers of NK cells have been reported in infants with severe RSV infection; however, the precise role of NK cells during acute RSV infection is unclear. In this study the NK and T cell phenotypes, LILRB1 gene polymorphisms and KIR genotypes of infants hospitalized with RSV infection were analyzed. Compared to controls, infants with acute RSV infection showed a higher proportion of LILRB1+ T cells; in addition, a subgroup of infants with RSV infection showed an increase in LILRB1+ NK cells. No differences in NKG2C, NKG2A, or CD161 expression between RSV infected infants and controls were observed. LILRB1 genotype distribution of the rs3760860 A>G, and rs3760861 A>G single nucleotide polymorphisms differed between infants with RSV infection and healthy donors, whereas no differences in any of the KIR genes were observed. Our results suggest that LILRB1 participates in the pathogenesis of RSV infection. Further studies are needed to define the role of LILRB1+ NK in response to RSV and to confirm an association between LILRB1 polymorphisms and the risk of severe RSV infection.  相似文献   

19.

Background

The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV).

Methods

Mice were infected intranasally with RSV and expression of β2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c+ CD8+ and CD11c- CD8+ T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8+ T cells was assessed by quantitative PCR.

Results

Following RSV infection CD11c+ CD8+ T cells were detectable in the lung from day 4 onwards and accounted for 45.9 ± 4.8% of CD8+ T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8+ T cells in the absence of RSV infection, its mRNA was expressed in CD8+ T cells of both naïve and RSV infected mice. CD11c+, but not CD11c-, CD8+ T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c+ CD8+ T cells were the major subset responsible for IFNγ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo.

Conclusion

CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号