首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Addition of lithium fluoride to a suspension of Na,K-ATPase undergoing turnover produced a slow (minutes) complete loss of ouabain-sensitive ATPase activity. Persistence of the effect in the presence of deferoxamine showed that fluoride inhibits independent of aluminum. The time course of onset of inhibition was adequately fit by a function corresponding to a monophasic transformation with a pseudo first-order rate constant (k(obs)). This constant varied hyperbolically with [Mg2+] (half-maximal effect at 9 mM Mg2+), whereas it increased with no sign of approaching saturation as the square of [F-], implying that inhibition requires binding of two fluorides/ATPase. The value of k(obs) was found to be increased by greater than 10-fold in the presence of potassium ([K+]1/2 = 0.6 mM) or ouabain. Sodium, ATP, and ADP, which favor the E1 form of the enzyme, had a protective effect. These results implicate the potassium-occluded MgE2(K2) complex as the main fluoride-susceptible form. Protection by Pi and orthovanadate suggests that fluoride exerts its effect at the phosphorylation site. Inhibition was reversible, although slowly, with t1/2 = 7 h at 37 degrees C. Sodium greatly accelerated reversal (t1/2 = 3 min with 150 mM Na+ present), and potassium antagonized this acceleration. The value of k(obs) for reactivation increased steeply with [Na+], with the sodium dependence being about the same at pH 8.0 as at pH 7.4. All of these effects have parallels to effects of fluoride on the sarcoplasmic reticulum CaATPase (Murphy, A. J., and Coll, R. J. (1992) J. Biol. Chem. 267, 5229-5235).  相似文献   

2.
The generation of the physiological response of a retinal rod cell to an incident photon involves activation of a cGMP phosphodiesterase (PDE) by a GTP-binding protein, transducin (T). This activation has been shown to occur by formation of a membrane-bound T alpha GTP-PDE complex (Clerc, A., and Bennett, N. (1992) J. Biol. Chem. 267, 6620-6627; Catty, P., Pfister, C., Bruckert, F., and Deterre, P. (1992) J. Biol. Chem 267, 19489-19493). The recovery of the response involves turning-off of T by its intrinsic GTPase activity. We show here that the formation of the membrane-bound T alpha GTP-PDE complex correlates with an enhanced rate of GTP hydrolysis. In vivo, this would provide an appropriate mechanism for fast turn-off of cGMP hydrolysis.  相似文献   

3.
S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase) crystallizes from solutions containing the intermediate analogue neplanocin A with the analogue bound in its 3'-keto form at the active sites of all of its four subunits and the four tightly bound cofactors in their reduced (NADH) state. The enzyme is in the closed conformation, which corresponds to the structure in which the catalytic chemistry occurs. Examination of the structure in the light of available, very detailed kinetic studies [Porter, D. J., Boyd, F. L. (1991) J. Biol. Chem. 266, 21616-21625. Porter, D. J., Boyd, F. L. (1992) J. Biol. Chem. 267, 3205-3213. Porter, D. J. (1998) J. Biol. Chem. 268, 66-73] suggests elements of the catalytic strategy of AdoHcy hydrolase for acceleration of the reversible conversion of AdoHcy to adenosine (Ado) and homocysteine (Hcy). The enzyme, each subunit of which possesses a substrate-binding domain that in the absence of substrate is in rapid motion relative to the tetrameric core of the enzyme, first binds substrate and ceases motion. Probably concurrently with oxidation of the substrate to its 3'-keto form, the closed active site is "sealed off" from the environment, as indicated by a large (10(8)(-)(9)-fold) reduction in the rate of departure of ligands, a feature that prevents exposure of the labile 3'-keto intermediates to the aqueous environment. Elimination of the 5'-substituent (Hcy in the hydrolytic direction, water in the synthetic direction) generates the central intermediate 4',5'-didehydro-5'-deoxy-3'-ketoadenosine. Abortive 3'-reduction of the central intermediate is prevented by a temporary suspension of all or part of the redox catalytic power of the enzyme during the existence of the central intermediate. The abortive reduction is 10(4)-fold slower than the productive reductions at the ends of the catalytic cycle and has a rate constant similar to those of nonenzymic intramolecular model reactions. The mechanism for suspending the redox catalytic power appears to be a conformationally induced increase in the distance across which hydride transfer must occur between cofactor and substrate, the responsible conformational change again being that which "seals" the active site. The crystal structure reveals a well-defined chain of three water molecules leading from the active site to the subunit surface, which may serve as a relay for proton exchange between solvent and active site in the closed form of the enzyme, permitting maintenance of active-site functional groups in catalytically suitable protonation states.  相似文献   

4.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In this paper we report the identification of a new disorder of mitochondrial fatty acid beta-oxidation in a patient which presented with clear manifestations of a mitochondrial beta-oxidation disorder. Subsequent studies in fibroblasts revealed an impairment in palmitate beta-oxidation and in addition, a combined deficiency of long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA-dehydrogenase and long-chain 3-oxoacyl-CoA thiolase. The recent identification of a multifunctional, membrane-bound beta-oxidation enzyme protein catalyzing all these three enzyme activities (Carpenter et al. (1992) Biochem. Biophys. Res. Commun. 183, 443-448; Uchida et al. (1992) J. Biol. Chem. 267, 1034-1041) suggested an underlying basis for this peculiar combination of three enzyme deficiencies. We show by means of size-exclusion chromatography that there is, indeed, a deficiency of the multifunctional beta-oxidation enzyme protein in this patient.  相似文献   

6.
We have previously shown that the zymogen factor XI (FXI) binds to activated platelets but not to human umbilical vein endothelial cells (HUVEC), a conclusion that is in conflict with previous reports stating that FXI binds to 2.7-13 x 10(6) high affinity sites per HUVEC (Berrettini, M., Schleef, R. R., Heeb, M. J., Hopmeier, P., and Griffin, J. H. (1992) J. Biol. Chem. 267, 19833-19839; Shariat-Madar, Z., Mahdi, F., and Schmaier, A. H. (2001) Thromb. Haemostasis 85, 544-551). It has also been reported that activated FXI (FXIa) binds to 1.5 x 10(6) sites per HUVEC and promotes the activation of factor IX by cell bound FXIa (Berrettini, M., Schleef, R. R., Heeb, M. J., Hopmeier, P., and Griffin, J. H. (1992) J. Biol. Chem. 267, 19833-19839). Therefore, the binding of FXIa to activated platelets was compared with FXIa binding to HUVEC and HEK293 cells immobilized on microcarrier beads. Specific and saturable zinc-dependent FXIa binding was demonstrated to 250 +/- 48 sites per activated platelet (K(D) = 1.7 +/- 0.78 nm) and 6.5 +/- 0.4 x 10(4) sites per HUVEC (K(D) = 2.4 +/- 0.5 nm), whereas no binding to HEK293 cells was detected. A titration with high molecular weight kininogen had no effect on FXIa binding to platelets, but revealed a concentration-dependent decrease in the amount of FXIa bound to HUVEC. The rate of factor IXa generation catalyzed by FXIa was unaffected by the presence of surfaces; however only the activated platelet surface protected FXIa from inhibition by protease nexin 2. The results presented here confirm the conclusion that activated platelets are procoagulant while unstimulated endothelial cells are not.  相似文献   

7.
Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages.   总被引:13,自引:0,他引:13  
Prostaglandin H synthase is a key enzyme in the formation of prostaglandins and thromboxane from arachidonic acid. The recent cloning of a second prostaglandin H synthase gene, prostaglandin H synthase-2, which is distinct from the classic prostaglandin H synthase-1 gene, may dramatically alter our concept of how cells regulate prostanoid formation. We have recently shown that the enhanced production of prostanoids by lipopolysaccharide-primed alveolar macrophages involves the induction of a novel prostaglandin H synthase (J. Biol. Chem., (1992), 267, 14547-14550). We report here that the novel PGH synthase induced by lipopolysaccharide in alveolar macrophages is prostaglandin H synthase-2.  相似文献   

8.
We have recently purified and characterized a truncated soluble form of furin from which the predicted transmembrane domain and cytoplasmic tail were deleted (Hatsuzawa, K., Nagahama, M., Takahashi, S., Takada, K., Murakami, K., and Nakayama, K. (1992) J. Biol. Chem. 267, 16094-16099). Our results showed that furin resembles the yeast Kex2 protease with respect to both its enzymic properties and substrate specificity. Here we demonstrate that the soluble form of furin is capable of converting the precursors of albumin and the third component of complement (proalbumin and pro-C3, respectively) in vitro to mature proteins. Thus furin mimics the Ca(2+)-dependent proalbumin and pro-C3 convertases found in the Golgi membranes (Brennan, S. O., and Peach, R. J. (1988) FEBS Lett. 229, 167-170; Oda, K. (1992) J. Biol. Chem. 267, 17465-17471). Furthermore we show that the variant alpha 1-antitrypsin Pittsburgh, which is a specific inhibitor of the Golgi proalbumin convertase, inhibits not only the Golgi pro-C3 convertase, but also the soluble furin. These results suggest a role for furin in the cleavage of proproteins transported via the constitutive pathway.  相似文献   

9.
Two different types of peptide:N-glycanase (PNGase) were identified in developing embryos of medaka fish ( Oryzias latipes ). Because the optimum pH values for their activities were acidic and neutral, they were designated as acid PNGase M and neutral PNGase M, respectively. The acid PNGase M corresponded to the enzyme that had been partially purified from medaka embryos (Seko,A., Kitajima,K., Inoue,Y. and Inoue,S. (1991) J. Biol. Chem., 266, 22110-22114). The apparent molecular weight of this enzyme was 150 K, and the optimal pH was 3.5-4.0, and the K m for L-hyosophorin was 44 microM. L-Hyosophorin is a cortical alveolus-derived glycononapeptide with a large N-linked glycan chain present in the perivitelline space of the developing embryo. Acid PNGase M was competitively inhibited by a free de-N-glycosylated nonapeptide derived from L-hyosophorin. This enzyme was expressed in ovaries and embryos at all developmental stages after gastrulation, but activity was not detected in embryos at developmental stages between fertilization and gastrula. Several independent lines of evidence suggested that acid PNGase M may be responsible for the unusual accumulation of free N-glycans derived from yolk glycoproteins (Iwasaki,M., Seko,A., Kitajima,K., Inoue,Y. and Inoue,S. (1992) J. Biol. Chem., 267, 24287-24296). In contrast, the neutral PNGase M was expressed in blastoderms from the 4-8 cell stage and in cells up to early gastrula. The general significance of these findings is that they show a developmental stage-dependent expression of the two PNGase activities, and that expression of the neutral PNGase M activity occurs concomitantly with the de-N-glycosylation of L-hyosophorin. These data thus support our conclusion that the neutral PNGase M is responsible for the developmental-stage-related de-N-glycosylation of the L-hyosophorin.  相似文献   

10.
The amino acid sequence of pig liver 4-aminobutyrate aminotransferase has been determined by gas-phase sequencing of proteolytically derived peptide fragments. The sequence differs substantially from that predicted for the same enzyme on the basis of the sequence of cDNA derived from pig brain in recently published work [Kwon, O., Park, J. & Churchich, J. E. (1992) J. Biol. Chem. 267, 7215-7216]. Apart from a few minor differences, the two sequences are completely different in the segment of protein comprising the 36 residues at positions 107-142. Insertion of a cytosine between bases 402 and 403 in the cDNA sequence, together with deletion of the guanine at position 510, results in a DNA sequence which predicts exactly the amino acid sequence determined by peptide analysis in the present work. The mammalian enzyme has approximately 44% sequence identity with the same enzyme from two unicellular eukaryotes (Saccharomyces cerevisiae, Aspergillus nidulans) and 22% identity with that from Escherichia coli.  相似文献   

11.
Na,K-ATPase from rectal glands of Squalus acanthias has been subjected to proteolysis with trypsin. The E1- and E2-forms of the enzyme can be distinguished from the inactivation patterns at low trypsin concentrations, as previously seen with kidney enzyme. Extensive degradation by trypsin in the presence of 5 mM Rb+ yields membrane fragments with a 19 kDa peptide as the major proteolytic fragment of the alpha-subunit. The sequence of the N-terminal 40 residues of this peptide is almost identical to that of a similar proteolytic fragment isolated by Capasso et al. (Capasso, J.M., Hoving, S., Tal, D.M., Goldshleger, R. and Karlish, S.J.D. (1992) J. Biol. Chem. 267, 1150-1158) using kidney Na,K-ATPase. Rb+ occlusion can be fully retained under these circumstances, supporting the findings with kidney enzyme that only minor parts of the alpha-subunit are required to form a functional occlusion-site.  相似文献   

12.
Gangliosides were recently shown to bind to calmodulin (Higashi, H., Omori, A., and Yamagata, T. (1992) J. Biol. Chem. 267, 9831-9838). This prompted us to investigate the effects of gangliosides on the calmodulin-dependent enzyme, cyclic nucleotide phosphodiesterase. Several species of gangliosides competitively inhibited calmodulin-stimulated phosphodiesterase activity, with GD1b, GT1b, and GD1a being noted to do so particularly (group 1). GM1, GQ1b, and GM2 (group 2) were less inhibitory, and GM3, GM3(NeuGc), GalCer, sulfatide, GgOse4Cer, and oligosaccharide portions of inhibitory gangliosides showed no inhibition in accordance with the binding specificity of calmodulin to gangliosides. Trypsin-activated phosphodiesterase was inhibited by gangliosides with similar specificity, indicating interactions of gangliosides with the enzyme. Inhibition, however, was less than that of calmodulin-dependent activity by these compounds and, in both cases, was eliminated by excess calmodulin. In the absence of calmodulin, group 1 gangliosides at lower concentrations activated the intact enzyme but inhibited it over a certain range of increase in concentration. Ganglioside-dependent modulation of calmodulin-dependent phosphodiesterase activity is thus shown to be due to interactions of gangliosides with both calmodulin and the enzyme, and consequently, ganglioside-calmodulin binding is likely the mechanism for regulation of the enzyme.  相似文献   

13.
Nitric oxide reductase was purified from Paracoccus denitrificans very nearly to homogeneity by a simple method that involved the use of octyl glucoside to solubilize the enzyme from membranes and required a single hydroxyapatite column. The enzyme had specific activities of about 10 mumol NO reduced x min-1 x mg-1 at pH 6.5 in an amperometric assay system using phenazine methosulfate/ascorbate as the reducing agent and about 22 mumol NO reduced x min-1 x mg-1 at pH 5.0, which is the optimum pH. These values are based on average rates over kinetically complex progress curves and would be about three times greater if based on maximum rate values. The enzyme appeared to be reversibly inhibited by NOaq and to have a Km too low (probably less than or equal to 1 microM) to measure reliably by the amperometric method. The effective second-order rate constant of the enzyme lay within 1 to 2 orders of magnitude of the diffusion controlled limit. The enzyme was composed of a tight complex of two cytochromes: a cytochrome c (Mr = 17,500) and a cytochrome b (Mr = 38,000). The mole ratios of cytochrome c to cytochrome b and Mr 17,500 peptide to Mr 38,000 peptide were both about 1.7, and the heme content was about 3 mol/73,000 g (38,000 + 2(17,500)). Each subunit therefore contained only one heme group. The Mr 38,000 peptide aggregated when heated in the sample buffer used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to the ascorbate-based activity, the enzyme showed a little NADH-NO oxidoreductase activity which was not inhibited by antimycin A. The enzyme lost activity with a half-life of about 2 days at 4 degrees C but could be preserved at -20 degrees C and in liquid nitrogen. It seemed not to be inactivated by aerobic solutions. These observations, and the recent ones by Carr and Ferguson (Carr, G.J., and Ferguson, S.J. (1990) Biochem. J. 269, 423-429) with a partially purified preparation of nitric oxide reductase, establish that the enzyme from Pa. denitrificans is a cytochrome bc complex which resembles that from Pseudomonas stutzeri (Heiss, B., Frunzke, K., and Zumft, W.G. (1989) J. Bacteriol. 171, 3288-3297). There would appear to be no functional relationship between nitric oxide reductase and a Mr = 34,000 peptide of Pa. denitrificans membranes reported previously to be present in purified preparations of a nitric oxide reductase (Hoglen, J., and Hollocher, T.C. (1989) J. Biol. Chem. 264, 7556-7563).  相似文献   

14.
Enzyme systems within living cells have recently been shown to be highly ordered structures that violate classic assumptions of the Michaelis-Menten formalism, which originally was developed for the characterization of isolated reactions in vitro. This evidence suggests that a thorough examination of alternative kinetic formalisms for integrated biochemical systems is in order. The purpose of this series of papers is to assess the utility of an alternative power-law formalism by carrying out a detailed comparative analysis of a relatively large, representative system--the tricarboxylic acid cycle of Dictyostelium discoideum. This system was chosen because considerable experimental information already has been synthesized into a detailed kinetic model of the intact system. In this first paper, we set the stage for subsequent analysis within the framework of the power-law formalism: we review the underlying theory, emphasizing recent developments, formulate the model in terms that are convenient for the analysis to follow, and develop the system representation in both the Michaelis-Menten and power-law forms. In the second paper (Shiraishi, F., and Savageau, M. A. (1992) J. Biol. Chem. 267, 22919-22925), these alternative representations are shown to be internally consistent and locally equivalent. The third paper (Shiraishi, F., and Savageau, M. A. (1992) J. Biol. Chem. 267, 22926-22933) provides a complete analysis of the steady state behavior and also treats the dynamic behavior of the model.  相似文献   

15.
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol liposomes by means of a freeze-thaw-sonication technique. Upon addition of MgATP, active H+ transport was observed, with a maximal rate of 2.1 mumol X mg-1 X min-1, requiring the presence of 100 mM K+ at the intravesicular site. However, in the absence of ATP an H+-K+ exchange with a maximal rate of 0.12 mumol X mg-1 X min-1 was measured, which could be inhibited by the well-known ATPase inhibitors vanadate and omeprazole, giving the first evidence of a passive K+-H+ exchange function of gastric (H+ + K+)-ATPase. An Na+-H+ exchange activity was also measured, which was fully inhibited by 1 mM amiloride. Simultaneous reconstitution of Na+/H+ antiport and (H+ + K+)-ATPase could explain why reconstituted ATPase appeared less cation-specific than the native enzyme (Rabon, E.C., Gunther, R.B., Soumarmon, A., Bassilian, B., Lewin, M.J.M. and Sachs, G. (1985) J. Biol. Chem. 260, 10200-10212).  相似文献   

16.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

17.
In the present study, the voltage-dependent mechanism of spermine transport in liver mitochondria [Toninello, A., Dalla Via, L., Siliprandi, D., and Garlid, K. D. (1992) J. Biol. Chem. 267, 18393-18397] was further characterized by determining the rate constants J(max) and K(m) as functions of membrane potential. An increase in mitochondrial membrane potential from 150 to 210 mV promoted spermine transport, as reflected by an approximate 4-fold increase in J(max) and 25% decrease in K(m). The mechanism for the voltage dependence of transport was examined using the beta value, i. e., the slope of ln(flux) vs FDeltaPsi/RT plots. Flux-voltage analyses performed at very high and very low spermine concentrations yielded beta values of 0.125 and 0.25, for J(max) and J(max)/K(m), respectively. The physical significance of these beta values was analyzed by means of a theory relating the enzyme reaction rate to the free energy profiles [Yagisawa, S. (1985) Biochem. J. 303, 305-311]. Depending on the nature of K(m), two possible models could be proposed to describe the location and shape of the barriers in the membrane. Analysis of previous data concerning spermine binding [Dalla Via, L., Di Noto, V., Siliprandi, D., and Toninello, A. (1996) Biochim. Biophys. Acta 1284, 247-252] by a new rationale provided evidence for an asymmetrical energy profile composed of two peaks with the binding site near the membrane surface followed by a rate-determining energy barrier for the movement of the bound spermine toward the internal region of the membrane.  相似文献   

18.
When kinetic models of complex biochemical systems are reconstructed from knowledge of the component reactions that have been characterized in vitro, or when values must be assumed for some of the parameters, errors are invariably encountered, and, as a consequence, the resulting model is frequently internally inconsistent. The simplest and most basic manifestations of such logical inconsistency are the failure of the model to exhibit a steady state or to yield a steady state that is in agreement with the actual steady state of the integrated system, or to yield a steady state that is dynamically stable. Models that are consistent may nonetheless be lacking in robustness, which is manifested as a pathological sensitivity to small changes in the values of their parameters. In this paper, we examine the current model of the tricarboxylic acid cycle in Dictyostelium discoideum (see Shiraishi, F., and Savageau, M. A. (1992) J. Biol. Chem. 267, 22912-22918) with regard to these basic indicators of model quality. This may be viewed as a preliminary analysis; the object is to determine whether or not the model is reasonable and worthy of a more refined analysis and, if not, to diagnose the areas in need of modification before further analysis is undertaken. The results demonstrate that the current model of the tricarboxylic acid cycle is self-consistent and possesses a steady state that is in agreement with experimental evidence. However, the results also suggest that this model is not very robust. The high sensitivities of parameters influencing pyruvate metabolism indicate that the experimental characterization of these reactions might be fruitfully re-examined. These high sensitivities lead us to predict that this model of the tricarboxylic acid cycle should be accurate only over a very narrow range in variation of the independent variables. This is verified by the results presented in the following paper (Shiraishi, F., and Savageau, M. A. (1992) J. Biol. Chem. 267, 22926-22933).  相似文献   

19.
The kinetic behaviour of tyrosinase is very complex because the enzymatic oxidation of monophenol and o-diphenol to o-quinones occurs simultaneously with the coupled non-enzymatic reactions of the latter. Both reaction types are included in the kinetic mechanism proposed for tyrosinase (Mechanism I [J. Biol. Chem. 267 (1992) 3801-3810]). We previously confirmed the validity of the rate equations by the oxidation of numerous monophenols and o-diphenols catalysed by tyrosinase from different fruits and vegetables. Other authors have proposed a simplified reaction mechanism for tyrosinase (Mechanism II [Theor. Biol. 203 (2000) 1-12]), although without deducing the rate equations. In this paper, we report new experimental work that provides the lag period value, the steady-state rate, o-diphenol concentration released to the reaction medium. The contrast between these experimental data and the respective numerical simulations of both mechanisms demonstrates the feasibility of Mechanism I. The need for the steps omitted from Mechanism II to interpret the experimental data for tyrosinase, based on the rate equations previously deduced for Mechanism I is explained.  相似文献   

20.
A structurally novel, tryptophan-rich antimicrobial tridecapeptide amide, named indolicidin, has recently been purified from bovine neutrophils (Selsted et al. (1992) J. Biol. Chem. 267, 4292-4295). Here we describe the molecular cloning of this endoantibiotic, which is synthesised in bone marrow cells as a 144 amino acid residue precursor. The encoded protein has a predicted mass of 16479 Da and a pI of 6.51. A putative signal peptide of 29 amino acids precedes a 101 residue pro-region. The mature peptide is at the 3' end of the open reading frame. A glycine, not found in purified indolicidin, is present at the carboxyl terminus of the deduced sequence and is very likely involved in post-translational peptide amidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号