首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recent discovery of free oligosaccharides typical for the complex type of glycan chains terminating with a free di-N-acetylchitobiosyl structure in certain fish eggs and early embryos (Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H., and Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Seko, A., Kitajima, K., Iwasaki, M., Inoue, S., and Inoue, Y. (1989) J. Biol. Chem. 264, 15922-15929; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K., and Inoue, Y. (1989) J. Biol. Chem. 264, 18520-18526) led us to find an enzyme responsible for detachment of N-linked glycan chains from glycoproteins by hydrolyzing the beta-aspartyl-glucosylamine linkage in Oryzias latipes embryos. The enzyme, peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase or peptide:N-glycosidase (PNGase), was partially (2090-fold) purified, and the reaction site at which this enzyme acts was specified by analysis and identification of the reaction products. This is the first demonstration showing PNGase in animal sources, although the presence of PNGases was reported in a variety of plant extracts and bacteria. Thus, the commonality of this type of enzyme is now demonstrated, and the possible physiological role of PNGase in de-N-glycosylation as a basic biologic process is proposed.  相似文献   

2.
Recent findings (Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H., and Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K., and Inoue, Y. (1989) J. Biol. Chem. 264, 18520-18526) of a relatively large quantity of complex-type free sialo-oligosaccharides in the unfertilized eggs of freshwater fish, Plecoglossus altivelis and Tribolodon hakonensis, prompted us to search for their progenitor glycoproteins. First we demonstrated a third occurrence of free sialoglycans in the unfertilized eggs of Medaka fish (Oryzias latipes). Next, in all three species studied, a uniformly high level of glycophosphoproteins (GPP) was identified and found to possess N-linked glycan units. The carbohydrate structures of the GPP were determined to be identical with those of the free glycans isolated from the unfertilized eggs of the respective fish species. Thus, the most likely candidate for the progenitor of free sialoglycans appeared to be the oocyte GPPs. This implies that the liberation of the free glycans by a putative peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase may represent a necessary biochemical event during vitellogenesis or oogenesis. The present results may provide insight into a new concept of a "protein N-glycosylation/de-N-glycosylation system" recently proposed by us (Seko, A., Kitajima, K., Inoue, Y., and Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114).  相似文献   

3.
In Medaka embryos (at the stages of blastulation to organogenesis), we found the presence of free glycan of which structure is identical with the multiantennary N-linked sugar chain of L-hyosophorin molecules which were originally present in the cortical alveoli of the unfertilized eggs in their precursor high molecular form. The free glycan-enriched fraction was separated from L-hyosophorin by chromatography on DEAE-Sephadex A-25 and Sephadex G-50 after removal of the sialic acid residues with exo-sialidase. Composition analysis, 400-MHz 1H NMR spectroscopy, and pyridylamination-hydrazinolysis-nitrous acid deamination of the free glycan showed the presence of di-N-acetylchitobiosyl structure at the reducing end, suggesting that the free glycan chain was derived from L-hyosophorin by the action of a specific peptide:N-glycosidase (PNGase). When we combine the previous finding of the hyosophorin-derived unique pentaantennary free glycan chain in the flounder embryos [A. Seko et al. (1989) J. Biol. Chem. 264, 15922-15929], it is anticipated that PNGase-catalyzed de-N-glycosylation of L-hyosophorin would be required at a certain stage of embryogenesis for L-hyosophorin to play a yet undefined functional role during early development.  相似文献   

4.
New glycoproteins of 100-120 kDa were isolated from the unfertilized eggs of flounder, Paralichthys olivaceus. Compositionally indistinguishable glycopeptides of 6 kDa were also purified from the activated or fertilized eggs. These high and low molecular mass glycoproteins are characterized by high (about 85%) carbohydrate content. Although some heterogeneities exist in the amino acid sequences, the 6-kDa glycopeptides (decapeptides with single large N-linked glycan chains), isolated from the fertilized eggs are the repeating units of the high molecular mass glycoproteins. As judged from several distinctive features the 100-120-kDa glycoproteins are apparently major components of cortical alveoli of flounder eggs and are regarded as members of glycoproteins we have defined under the name of "hyosophorin" (Kitajima, K., Inoue, S., and Inoue, Y. (1989) Dev. Biol. 132, 544-553). Composition analysis, Smith degradation, hydrazinolysis-nitrous acid deamination, permethylation analysis, and 400-MHz 1H NMR spectroscopy provided evidence for the structure of a novel penta-antennary glycan chain attached to the repeating unit (decapeptide) of the protein core. The structure thus determined is: (Formula: see text). The presence of a unique class of carbohydrate-rich glycoproteins (H-hyosophorin) in the unfertilized eggs, their conversion to the repeating unit (L-hyosophorin) at fertilization, and the finding of a free glycan chain that was formed by scission between the GlcNAc and Asn residues of L-hyosophorin, in the fertilized eggs including embryos of 4-11-h postinsemination, support the view that these molecules may be important in fertilization and subsequent development.  相似文献   

5.
The pre-existence of alpha2-->8-linked disialic acid (di-Sia) and oligosialic acid (oligo-Sia) structures with up to 7 Sia residues was shown to occur on a large number of brain glycoproteins, including neural cell adhesion molecules (N-CAMs), by two highly sensitive chemical methods (Sato, C., Inoue, S., Matsuda, T., and Kitajima, K. (1998) Anal. Biochem. 261, 191-197; Sato, C., Inoue, S., Matsuda, T., and Kitajima, K. (1999) Anal. Biochem. 266, 102-109). This unexpected finding was also confirmed using a newly developed antibody prepared using a copolymer of alpha2-->8-linked N-acetylneuraminyl p-vinylbenzylamide and acrylamide as an immunogen and known antibodies whose immunospecificities were determined to be di- and oligo-Sia residues with defined chain lengths. The major significance of the new finding that di- and oligo-Sia chains exist on a large number of brain glycoproteins is 2-fold. First, it reveals a surprising diversity in the number and M(r) of proteins distinct from N-CAM that are covalently modified by these short sialyl glycotopes. Second, it suggests that synthesis of di- and/or oligo-Sia units may be catalyzed by alpha2-->8-sialyltransferase(s) that are distinct from the known polysialyltransferases, STX and PST, which are partially responsible for polysialylation of N-CAM.  相似文献   

6.
Polysialoglycoprotein, a novel type of glycoprotein found in the eggs of rainbow trout has been shown to undergo dramatic depolymerization (200- to 9-kDa) upon fertilization of the eggs. Molecular mechanism of this depolymerization has been elucidated to be the result of proteolysis catalyzed by a highly specific protease induced at fertilization. The low molecular weight polysialoglycoprotein obtained from the fertilized eggs accounted for about 85% of total polysialoglycoprotein and comprised glycotridecapeptides with a uniform peptide sequence which was determined to be Asp-Asp-Ala-Thr*-Ser*-Glu-Ala-Ala-Thr*-Gly-Pro-Ser-Gly, where * indicates the site of glycosylation. This glycotridecapeptide constitutes a repeating unit of the 200-kDa polysialoglycoprotein in the unfertilized eggs: (Asp) 0-2-Ala-Thr*-Ser*-Glu-Ala-Ala-Thr*-Gly-Pro-Ser-Gly-(Asp-Asp-Ala-Thr*-Ser *-Glu- Ala-Ala-Thr*-Gly-Pro-Ser-Gly)n (n = 25) (Kitajima, K., Inoue, Y., and Inoue, S. (1986) J. Biol. Chem. 261, 5262-5269). The fertilization-induced depolymerization of polysialoglycoprotein appeared to be completed within 5 min postfertilization. The same reaction was also induced by parthenogenetic activation of the eggs by immersing in fresh water or nonelectrolyte solutions. Thus the phenomenon is closely associated with the exocytosis of cortical vesicles (alveoli) of the eggs.  相似文献   

7.
Recently, we have reported purification and characterization of a de-N-glycosylating enzyme, peptide:N-glycanase (PNGase) found in C3H mouse fibroblast L-929 cells, and designated L-929 PNGase [Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1994)J Biol Chem 269, 17611–18]. The unique properties of L-929 PNGase are that the enzyme had a high affinity to the substrate glycopeptide (e.g.K m=114 µm for fetuin derived glycopentapeptide) and that the PNGase-catalysed reaction is strongly inhibited by the released free oligosaccharides but not by the free peptides formed, suggesting that L-929 PNGase is able to bind to a certain type of carbohydrate chain. In this study, we report the new findings of the mannan-binding property of L-929 PNGase; the de-N-glycosylating enzyme activity of L-929 PNGase was inhibited by yeast mannan and triomannose, Man1 3(Man1 6)Man, but not by mannose and -methyl-d-mannoside. Furthermore, L-929 PNGase was revealed to bind to the glycan moiety of yeast mannan by using mannan-conjugated Sepharose 4B gel as a ligand, suggesting that L-929 PNGase could serve not only as an enzyme but also as a carbohydrate recognition proteinin vivo. Such dual properties found for animal-derived L-929 PNGase are unique and are not shared with other previously characterized plant- and bacterial-origin PNGases — PNGase A and PNGase F, respectively.Abbreviations GLC gas liquid chromatography - GlcNAc-Asn 2-acetamido-1--(l-aspartamido)-1,2-dideoxy-d-glucose - BSA bovine serum albumin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Man d-mannose; triomannose, Man1 3(Man1 6)Man; - MES 2-(N-morphorino)ethanesulfonic acid - NeuAc N-acetyl-neuraminic acid - PNGase peptide:N 4-(N-accetyl-glucosaminyl)asparagine amidase (peptide:N-glycanase,EC 3.5.1.52) - PNP p-nitrophenyl  相似文献   

8.
The activities of the de-N-glycosylation enzymes endo-N-acetyl- [beta]-D-glucosaminidase (ENGase; EC 3.2.1.96) and peptide-N4- (N-acetyl-[beta]-D-glucosaminyl) asparagine amidase (PNGase; EC 3.5.1.52) were monitored during germination and postgerminative development in radish (Raphanus sativus L. cv Flamboyant). The ENGase activity was detected only during postgermination, whereas the PNGase activity was present at high levels in both stages. When germination was inhibited with abscisic acid or cycloheximide, PNGase activity was detected at a basic level and ENGase activity was not detected at all. PNGase is present as an active protein in dry seeds and is apparently synthesized during seed formation. Conversely, the absence of ENGase in dry seeds suggests that its activity is dependent on the protein synthesis that occurs during and after germination. Treatment with gibberellic acid confirmed the production of both de-N-glycosylation enzymes after germination, and demonstrated a temporal delay between the production of the two enzymes during this period. Our results suggest that the two de-N-glycosylation enzymes are differentially regulated during plant development.  相似文献   

9.
Recently we have cloned the cDNAs and genomic DNAs for apopolysialoglycoproteins (apoPSGPs) of Salmo gairdneri (rainbow trout) [Sorimachi, H., Emori, Y., Kawasaki, H., Kitajima, K., Inoue, S., Suzuki, K., & Inoue, Y. (1988) J. Biol. Chem. 262, 17678-17684], and the sequence analyses have indicated that the mRNAs for apoPSGPs vary in length and contain different numbers of identical 39-bp repeating units encoding the tridecapeptide (Asp-Asp-Ala-Thr-Ser-Glu-Ala-Ala-Thr-Gly-Pro-Ser-Gly) as well as highly conserved sequences encoding pre-, pro-, and telo-peptide regions. In this study we isolated cDNA clones for yamame (cherry salmon, river resident form; Oncorhynchus masou ishikawai) apoPSGP using a genomic DNA fragment for rainbow trout apoPSGP as a probe. The nucleotide sequence analyses revealed that the structures of mRNAs for yamame apoPSGP including the noncoding regions are essentially identical to those for rainbow trout, showing 90% sequence identity. Within the repeating region, 4 bp out of the 39 were replaced, producing a different tridecapeptide, Asp-Asp-Ala-Thr-Ser-Glu-Ala-Ala-Thr-Gly-Pro-Ser-Ser. This tridecapeptide is unique to yamame and common among all cDNAs obtained from yamame. Genomic Southern blot analysis showed that the yamame apoPSGP genes constituted a multiple gene family with a similar gene organization to that of rainbow trout. Oligodeoxynucleotide probes (18 bases) synthesized based on specific sequences for the yamame repeating unit hybridized only to the yamame DNA and not to the rainbow trout DNA, and vice versa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Polysialoglycoprotein (PSGP) of unfertilized eggs of rainbow trout (Salmo gairdneri) consists of tandem repeats (about 25) of a glycotridecapeptide, Asp-Asp-Ala-Thr*-Ser*-Glu-Ala-Ala-Thr*-Gly-Pro-Ser-Gly (* denotes the attachment site of a polysialoglycan chain) (Kitajima, K., Inoue, Y., and Inoue, S. (1986) J. Biol. Chem. 261, 5262-5269). By using oligodeoxynucleotide probes based on the above sequence, we isolated a genomic clone for apoPSGP which contains 39-base pair repeats (5'-GACGACGCCACCTCTGAAGCT-GCGACCGGCCCGTCTGGC-3') encoding the tridecapeptide. Using a fragment of this genomic DNA as a probe, we next screened a cDNA library constructed with mRNA from immature ovaries of rainbow trout. Nucleotide sequencing analyses of cDNA clones thus obtained revealed that apoPSGP is encoded by multiple mRNA species consisting of diverged numbers (6-32) of the 39-base repeat encoding the tridecapeptide unit and homologous 5'- and 3'-bordering regions. The encoded protein consists of three distinct regions: the N-region consisting of a putative signal peptide and a pro-peptide, the R-region containing diverged numbers of the tandem repeat of 13-amino acid residues, and the C-region with six amino acid residues. Southern blot analysis showed that multiple mRNAs are transcribed from multiple genes for apoPSGP containing diverged numbers of the 39-base pair repeat. Thus, the genes for apoPSGP constitute a multigene family. Expression of the mRNAs is stage and organ specific, i.e. they are expressed only in immature ovaries and not in mature ovaries or in any other organ.  相似文献   

11.
Recently, embryonic chicken brain extract was shown to contain a glucuronyltransferase, which transfers glucuronic acid from UDP-glucuronic acid to glycolipid acceptors (neolactotetraosyl ceramide). The enzyme was also suggested to transfer glucuronic acid to glycoprotein acceptors (asialoorosomucoid) (Das, K. K., Basu, M., Basu, S., Chou, D. K. H., and Jungalwala, F. B. (1991) J. Biol. Chem. 266, 5238-5243). In this study, the glucuronyltransferase activity in rat brain extract was separated into two groups by UDP-glucuronic acid-Sepharose CL-6B column chromatography. The enzyme recovered predominantly in the effluent fraction (GlcAT-L) catalyzed the transfer of glucuronic acid to glycolipid acceptors but not to glycoprotein acceptors, whereas the enzyme recovered in the eluate fraction (GlcAT-P) transferred glucuronic acid most predominantly to glycoprotein acceptors and very little to glycolipid acceptors. GlcAT-P was able to transfer glucuronic acid to oligosaccharide chains on asialoorosomucoid. The enzyme recognized a terminal lactosamine structure, Gal beta 1-4GlcNAc, on glycoproteins. It was localized in the nervous system and was hardly detectable in other tissues, including the thymus, spleen, lung, kidney, and liver. Although GlcAT-L and GlcAT-P shared some properties in common such as tissue distributions and developmental changes, they exhibited marked differences in their phospholipid dependence and in their pH profiles, apart from their respective acceptor preference to glycolipids and glycoproteins. The acceptor specificity and tissue distribution suggest that a novel glucuronyltransferase, GlcAT-P, is involved in the biosynthesis of the sulfoglucuronylgalactose structure in the HNK-1 carbohydrate epitope that is expressed on glycoproteins.  相似文献   

12.
Decay of the 4a-hydroxy-FAD intermediate of phenol hydroxylase   总被引:1,自引:0,他引:1  
The oxidative half-reaction of phenol hydroxylase involves the formation of three spectrally distinct intermediates (Detmer, K.M., and Massey, V. (1985) J. Biol. Chem. 260, 5998-6005). Addition of an aerobic NADPH-regenerating system, phenol, and azide quantitatively converted oxidized enzyme to the third intermediate, a 4a-hydroxy-FAD species (Detmer, K.M., and Massey, V. (1984) J. Biol. Chem. 259, 11265-11272). This intermediate was isolated in the presence of azide and a wide variety of phenolic ligands. Decay rates were followed for the dehydration of 4a-hydroxy-FAD enzyme resulting in the original oxidized form. Deviation from the rate observed in the absence of phenolic ligands was presumed to be indicative of a binding interaction. Several phenols displayed further stabilization of the 4a-hydroxyflavin species. These ligands exhibited saturation kinetics with respect to the decay half-lives, consistent with a mechanistic model in which both free and bound 4a-hydroxy-FAD enzyme may be directly dehydrated to produce the oxidized species. The lack of stabilization by catechol, the natural product, suggests that product is released from the enzyme during turnover by the time that this intermediate is formed. A pH profile, generated for the decay rates in the absence and presence of phenolic ligand, suggests both acid and base catalysis by hydronium ion and hydroxide, respectively.  相似文献   

13.
The calcium-activated, phospholipid-dependent protein kinase (C kinase) and its proteolytic product (M kinase), originally discovered in central nervous tissue (Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7603-7610) were characterized in bovine adrenal cortex cytosol. An endogenous calcium-dependent protease able to generate M kinase from the isolated C kinase in vitro was also present in adrenocortical extracts. Bovine adrenocortical cells in suspension as well as in primary culture contain the C and the M kinase activities. Treatment of these cells by steroidogenic concentrations (nM to microM) of ACTH resulted in a time and dose-dependent increase of cytosolic C kinase activity, whereas no change in M kinase activity was detected. This apparent activation appears to result mostly from an intracellular shift of the membrane-associated C kinase to a soluble cytosolic form of the enzyme. These observations open the question of the possible implication of the calcium, phospholipid-dependent protein phosphorylation system in hormone-dependent cellular regulatory processes.  相似文献   

14.
T G Consler  S H Woodard  J C Lee 《Biochemistry》1989,28(22):8756-8764
Pyruvate kinase is an important glycolytic enzyme which is expressed differentially as four distinct isozymes whose catalytic activity is regulated in a tissue-specific manner. The kidney isozyme is known to exhibit sigmoidal kinetics, whereas the muscle isozyme exhibits hyperbolic kinetic properties. By integration of the crystallographic [Stuart, D. I., Levine, M., Muirhead, H., & Stammers, D.K. (1979) J. Mol. Biol. 134, 109-142] and primary sequence data [Noguchi, T., Inoue, H., & Tanaka, T. (1986) J. Biol. Chem. 261, 13807], it was shown that the primary sequence for the C alpha 1 and C alpha 2 regions may constitute the allosteric switching site. To provide insights into the effects of the localized sequence change on the global structural and functional behavior of the enzyme, kinetic studies under a wide spectrum of conditions were conducted for both the muscle and kidney isozymes. These conditions include measurements of enzyme activity as a function of substrate concentrations with different concentrations of allosteric inhibitors or activators. These results showed that both isozymes exhibit the same regulatory properties although quantitatively the distribution of active and inactive forms and the various dissociation constants which govern the binding of substrate and allosteric effectors with the enzyme are different. For such a majority of equilibrium constants to be altered, the localized primary sequence change must confer global perturbations which are manifested as differences in the various equilibrium constants. Structural information about these two isozymes was provided by phase-modulation measurement of the fluorescence lifetime of tryptophan residues under a variety of experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two species of adenylate kinase isozymes (ATP:AMP phosphotransferase, EC 2.7.4.3) from human Duchenne dystrophic serum were separated by Blue Sepharose CL-6B affinity column chromatography. One of these species was the "aberrant" adenylate kinase isozyme, found specifically in the Duchenne type of this disease (Hamada, M., Okuda, H., Oka, K., Watanabe, T., Ueda, K., Nojima, M., Kuby, S.A., Manship, M., Tyler, F., and Ziter, F. (1981) Biochim. Biophys. Acta 660, 227-237). The separated aberrant form possessed a molecular size of 98,000 (+/- 1,500), whereas the normal serum species of the enzyme was 87,000 (+/- 1,600) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by gel filtration, and by sedimentation equilibrium. The sedimentation coefficient of each species was found to be 5.8 S for the aberrant form and 5.6 S for the normal form, respectively. The subunit size (Mr = 24,700) of the aberrant enzyme in 8 M urea proved to be very similar to that of the normal human liver enzyme (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S.A. (1982) J. Biol. Chem. 257, 13120-13128), and the normal species subunit (Mr = 21,700) was found to be very similar to that of the normal human muscle enzyme (Kuby, S.A., Fleming, G., Frischat, A., Cress, M.C., and Hamada, M. (1983) J. Biol. Chem. 258, 1901-1907). Both species were tetrameric enzymes in the serum. The amino acid composition for the normal species was similar to that for the muscle-type enzyme, and that for the aberrant species was similar to the liver enzyme, but with some notable exceptions in both cases. Thus, the normal species had no tryptophan and two half-cystine residues/subunit; whereas, there was 1 tryptophan and 4 half-cystine residues/subunit of the aberrant molecule. The amino acid composition of both serum isozymes when compared to their respective muscle or liver-type enzyme differed mainly in the content of Glu, Asp, His, Leu, Ile, Gly. Kinetic properties of the two forms of human serum adenylate kinase were studied at limiting concentrations of both ADP3- and MgADP- in the reverse reaction and of AMP2- and MgATP2- in the forward reaction. The type of reaction mechanism compatible with the data was a two-substrate random quasiequilibrium type of mechanism without independent binding of the substrates and with a rate-limiting step largely at the interconversion of the ternary complexes.  相似文献   

16.
Zhang Z  Inoue T  Forgac M  Wilkens S 《FEBS letters》2006,580(8):2006-2010
Vacuolar ATPases (V1V0 -ATPases) function in proton translocation across lipid membranes of subcellular compartments. We have used antibody labeling and electron microscopy to define the position of subunit C in the vacuolar ATPase from yeast. The data show that subunit C is binding at the interface of the ATPase and proton channel, opposite from another stalk density previously identified as subunit H [Wilkens S., Inoue T., and Forgac M. (2004) Three-dimensional structure of the vacuolar ATPase - Localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942-41949]. A picture of the vacuolar ATPase stalk domain is emerging in which subunits C and H are positioned to play a role in reversible enzyme dissociation and activity silencing.  相似文献   

17.
Joshi S  Katiyar S  Lennarz WJ 《FEBS letters》2005,579(3):823-826
Peptide:N-glycanase (PNGase) is a deglycosylating enzyme that catalyzes the hydrolysis of the beta-aspartylglycosylamine bond of aspargine-linked glycopeptides and glycoproteins. Earlier studies from our laboratory indicated that PNGase catalyzed de-N-glycosylation was limited to glycopeptide substrates, but recent reports have demonstrated that it also acts upon full-length misfolded glycoproteins. In this study, we utilized two glycoprotein substrates, yeast carboxypeptidase and chicken egg albumin (ovalbumin), to study the deglycosylation activity of yeast PNGase and its mutants. Our results provide further evidence that PNGase acts upon full-length glycoprotein substrates and clearly establish that PNGase acts only on misfolded or denatured glycoproteins.  相似文献   

18.
Alkaline phosphatase of matrix vesicles isolated from fetal bovine epiphyseal cartilage was purified to apparent homogeneity using monoclonal antibody affinity chromatography. The enzyme from the butanol extract of matrix vesicles bound specifically to the immobilized antibody-Sepharose in the presence of 2% Tween 20 whereas the major portion of nonspecific protein was removed by this single step. Of various agents tested, 0.6 M 2-amino-2-methyl-1-propanol, pH 10.2, was the most effective in eluting 80-100% of the enzyme initially applied. Both Tween 20 and 2-amino-2-methyl-1-propanol associated with the eluted enzyme were effectively removed by the sequential application of DEAE-cellulose and Sepharose CL-6B chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme preparation treated with sodium dodecyl sulfate and mercaptoethanol showed the presence of a dominant band (using silver staining) corresponding to a molecular weight of 81,000. This molecular weight was nearer reported values for rat liver (Ohkubo, A., Langerman, N., and Kaplan, M. M. (1974) J. Biol Chem. 249, 7174-7180) and porcine kidney (Cathala, G., Brunel, C., Chapplet-Tordo, D., and Lazdunski, M. (1975) J. Biol. Chem. 250, 6040-6045) alkaline phosphatase, than to previously reported values for chicken (Cyboron, G. W., and Wuthier, R. E. (1981) J. Biol. Chem. 256, 7262-7268) and fetal calf (Fortuna, R., Anderson, H. C., Carty, R. P., and Sajdera, S. W. (1980) Calcif. Tissue Int. 30, 217-225) cartilage matrix vesicle alkaline phosphatase. The purified alkaline phosphatase was activated by micromolar Mg2+. The amino acid composition of cartilage alkaline phosphatase was found to be similar to that previously described for porcine kidney (Wachsmuth, E. D., and Hiwada, K. (1974) Biochem. J. 141, 273-282). Double immunoprecipitation data indicated that monoclonal antibody against cartilage alkaline phosphatase cross-reacted with fetal bovine liver or kidney enzyme but failed to react with calf intestinal or rat cartilage enzyme. Thus these observations suggest that alkaline phosphatase of matrix vesicles from calcifying epiphyseal cartilage is a liver-kidney-bone isozyme.  相似文献   

19.
As an essential step toward cryopreservation of fish embryos, we examined the chilling sensitivity of medaka (Oryzias latipes) embryos at various developmental stages. Embryos at the 2-4 cell, 8-16 cell, morula, blastula, and early gastrula stages were suspended in Hanks solution. They were chilled to various temperatures (usually 0 degrees C), kept for various periods (usually 20 min), then cultured for up to 14 d to determine survival (assessed by the ability to hatch). Embryos at the 2-4 cell stage were the most sensitive to chilling to 0 degrees C, but sensitivity decreased as development proceeded. The survival rate of 2-4 cell embryos was affected after 2 min of chilling at 0 degrees C; although the rate decreased gradually as the duration of chilling increased, 38% of them still survived after 40 min of chilling. Embryos at the 2-4 cell stage were sensitive to chilling at 0 or -5 degrees C, but much less sensitive at 5 or 10 degrees C. The survival rate of 2-4 cell embryos subjected to repeated rapid cooling and warming was similar to that of those kept chilled. When early gastrula embryos were preserved at 0 or 5 degrees C, the hatching rate did not decrease after 12 and 24h of chilling, respectively, but then decreased gradually as storage was prolonged; however, 3-10% of the embryos hatched even after storage for 10 d. In conclusion, although later-stage medaka embryos would be suitable for cryopreservation (from the perspective of chilling sensitivity), chilling injury may not be serious in earlier stage embryos.  相似文献   

20.
In the preceding paper (Inoue, H., Otsu, K., Yoneda, M., Kimata, K., Suzuki, S., and Nakanishi, Y. (1986) J. Biol. Chem. 261, 4460-4469), we reported the purification from human serum of an N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase fraction which was able to transfer sulfate predominantly to position 6 of the nonreducing terminal N-acetylgalactosamine 4-sulfate unit of chondroitin sulfate. We now show that the activity toward the terminal was co-purified with a minor activity toward the interior counterpart by sequential chromatography on heparin-Sepharose CL-6B, Matrex Blue B, hydroxyapatite, and Sephacryl S-300, and that the two activities were equally heatlabile. The enzyme purified 5000-fold from human serum was devoid of the sulfotransferase activities toward chondroitin, heparan sulfate, and keratan sulfate, but showed a strong terminal sulfotransferase activity toward dermatan sulfate (pig skin); over 97% of the sulfate residues incorporated were at position 6 of the nonreducing N-acetylgalactosamine 4,6-bissulfate end groups linked to the L-iduronic acid group. Although the enzyme introduces sulfate predominantly into the nonreducing terminal of chondroitin sulfate at physiological pH (approximately equal to 7.0) and Ca2+ concentration (approximately 2-3 mM), the activity toward the interior portion relative to that toward the terminal was increased by either lowering pH or elevating Ca2+ concentration, perhaps owing to changes in the conformation or ionic state of the acceptor molecule. Comparison between the human serum enzyme and the N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (formerly designated "E6-sulfotransferase") from squid cartilage indicated that the latter is distinct from the former in introducing sulfate predominantly into the interior portion of chondroitin sulfate. It appears that the role of the squid sulfotransferase is to synthesize so-called chondroitin sulfate E where over 50% of the interior hexosamine units are 4,6-bis-sulfated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号