首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Causes and implications of spatial variability in postfire tree density and understory plant cover for patterns of aboveground net primary production (ANPP) and leaf area index (LAI) were examined in ninety 11-year-old lodgepole pine (Pinus contorta var. latifolia Engelm.) stands across the landscape of Yellowstone National Park (YNP), Wyoming, USA. Field studies and aerial photography were used to address three questions: (1) What is the range and spatial pattern of lodgepole pine sapling density across the burned Yellowstone landscape and what factors best explain this variability? (2) How do ANPP and LAI vary across the landscape and is their variation explained by abiotic factors, sapling density, or both? (3) What is the predicted spatial pattern of ANPP and LAI across the burned Yellowstone landscape? Stand density spanned six orders of magnitude, ranging from zero to 535,000 saplings ha?1, and it decreased with increasing elevation and with increasing distance from unburned forest (r 2?=?0.37). Postfire densities mapped from 1:30,000 aerial photography revealed that 66% of the burned area had densities less than 5000 saplings ha?1 and approximately 25% had densities greater than 10,000 saplings ha?1; stand density varied spatially in a fine-grained mosaic. New allometric equations were developed to predict aboveground biomass, ANPP, and LAI of lodgepole pine saplings and the 25 most common herbaceous and shrub species in the burned forests. These allometrics were then used with field data on sapling size, sapling density, and percent cover of graminoid, forb, and shrub species to compute stand-level ANPP and LAI. Total ANPP averaged 2.8 Mg ha?1y?1 but ranged from 0.04 to 15.12 Mg ha?1y?1. Total LAI averaged 0.80 m2 m?2 and ranged from 0.01 to 6.87 m2 m?2. Variation in ANPP and LAI was explained by both sapling density and abiotic factors (elevation and soil class) (ANOVA, r 2?=?0.80); abiotic variables explained 51%–54% of this variation. The proportion of total ANPP contributed by herbaceous plants and shrubs declined sharply with increasing sapling density (r 2?=?0.72) and increased with elevation (r 2?=?0.36). However, total herbaceous productivity was always less than 2.7 Mg ha?1 y?1, and herbaceous productivity did not compensate for tree production when trees were sparse. When extrapolated to the landscape, 68% of the burned landscape was characterized by ANPP values less than 2.0 Mg ha?1y?1, 22% by values ranging from 2 to 4 Mg ha?1y?1, and the remaining 10% by values greater than 4 Mg ha?1y?1. The spatial patterns of ANPP and LAI were less heterogeneous than patterns of sapling density but still showed fine-grained variation in rates. For some ecosystem processes, postfire spatial heterogeneity within a successional stage may be similar in magnitude to the temporal variation observed through succession.  相似文献   

2.
Gross production and carbon cycling in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, were determined, and then a compartment model showing the carbon stock and cycling within the ecosystem was developed. Aboveground carbon stock was 52.3 tC ha−1, increasing at a rate of 3.6 tC ha−1 year−1. Belowground carbon stock was 20.8 tC ha−1 in the root system and 92.0 tC ha−1 in the soil. Aboveground net production was 11.2 tC ha−1 year−1. Belowground net production was crudely estimated at 4.5 tC ha−1 year−1. The gross production was estimated at 41.8 tC ha−1 year−1 by summing the amount of outflow to the environment and the increment in biomass. Leaves consumed 13.7 tC ha−1 year−1 by respiration; the rest (41.8−13.7=28.1 tC ha−1 year−1) was surplus production of the leaves and flowed into the other compartments. The amounts of construction and maintenance respiration of the aboveground compartments were 3.4 and 18.5 tC ha−1 year−1, respectively. The annual amount of soil respiration was 11.2 tC ha−1 year−1. Soil respiration levels of 4.3 and 3.1 tC ha−1 year−1 were estimated for the flow of root respiration and root detritus. The proportion of net to gross production was 37%, which fell within the range of young and mature forests. A shorter life span of culms, compared to tree trunks, resulted in smaller biomass accumulation ratio (biomass/net production) in the ecosystem, of 4.66.  相似文献   

3.
The accumulation and decomposition of coarse woody debris (CWD) are processes that affect habitat, soil structure and organic matter inputs, and energy and nutrient flows in forest ecosystems. Natural disturbances such as fires typically produce large quantities of CWD as trees fall and break, whereas human disturbances such as timber harvesting remove much of the CWD. Our objective was to compare the amount of CWD removed and left behind after clear-cutting to the amount consumed and left behind after natural fires in Rocky Mountain lodgepole pine. The masses of fallen logs, dead-standing trees, stumps, and root crowns more than 7.5 cm in diameter were estimated in clear-cut and intact lodgepole pine forests in Wyoming and compared to estimates made in burned and unburned stands in Yellowstone National Park (YNP), where no timber harvesting has occurred. Estimates of downed CWD consumed or converted to charcoal during an intense crown fire were also made in YNP. No significant differences in biomass of downed CWD more than 7.5 cm in diameter were detected between burned stands and those following a single clear-cut. However, the total mass of downed CWD plus the mass of snags that will become CWD was nearly twice as high in burned stands than in clear-cuts. In YNP, approximately 8% of the downed CWD was consumed by fire and an additional 8% was converted to charcoal, for an estimated loss of about 16%. In contrast, approximately four times more wood (70%) was removed by clear-cutting. Considering all CWD more than 7.5 cm in diameter that was either still present in the stand or removed by harvesting, slash treatment, or burning, clear-cut stands lost an average of 80 Mg ha−1 whereas stands that burned gained an average of 95 Mg ha−1. Some CWD remains as slash and stumps left behind after harvesting, but stands subjected to repeated harvesting will have forest floor and surface soil characteristics that are beyond the historic range of variability of naturally developing stands. Received 16 November 1999; Accepted 31 May 2000.  相似文献   

4.
Biomass and aboveground net primary production (ANPP) in a monospecific pioneer stand of a mangrove Kandelia obovata (S., L.) Yong were quantified. The estimated biomasses in leaves, branches, stems, roots, aboveground and total were 5.61 (3.68%), 28.8 (18.9%), 46.1 (30.2%), 71.8 (47.2%), 80.5 (52.8%) and 152 Mg ha−1 (100%), respectively. Stem phytomass increment per tree was estimated using allometric relationships and stem analysis. Stem volume without bark of harvested trees showed a strong allometric relationship with D 0.12 H (D 0.1, diameter at a height of one-tenth of tree height H) (R 2 = 0.924). Annual stem volume increment per tree showed a strong allometric relationship with D 0.12 H (R 2 = 0.860). Litterfall rate ranges from 3.87 to 56.1 kg ha−1 day−1 for leaves and 0.177 to 46.2 kg ha−1 day−1 for branches. Seasonal changes of litterfall rate were observed, which showed a peak during wet season (August–September). Total annual litterfall was estimated as 10.6 Mg ha−1 year−1, in which 68.2% was contributed by the leaves. The ANPP in the K. obovata stand was 29.9–32.1 Mg ha−1 year−1, which is ca. 2.8–3.0 times of annual litterfall. The growth efficiency (aboveground biomass increment/LAI) was 5.35–5.98 Mg ha−1 year−1. The low leaf longevity (9.3 months) and high growth efficiency of K. obovata makes it a highly productive mangrove species.  相似文献   

5.
Efforts to improve models of terrestrial productivity and to understand the function of tropical forests in global carbon cycles require a mechanistic understanding of spatial variation in aboveground net primary productivity (ANPP) across tropical landscapes. To help derive such an understanding for Borneo, we monitored aboveground fine litterfall, woody biomass increment and ANPP (their sum) in mature forest over 29 months across a soil nutrient gradient in southwestern Kalimantan. In 30 (0.07 ha) plots stratified throughout the watershed (∼340 ha, 8–190 m a.s.l.), we measured productivity and tested its relationship with 27 soil parameters. ANPP across the study area was among the highest reported for mature lowland tropical forests. Aboveground fine litterfall ranged from 5.1 to 11.0 Mg ha−1 year−1 and averaged 7.7 ± 0.4 (mean ± 95 C.I.). Woody biomass increment ranged from 5.8 to 23.6 Mg ha−1 year−1 and averaged 12.0 ± 2.0. Growth of large trees (≥60 cm dbh) contributed 38–82% of plot-wide biomass increment and explained 92% of variation among plots. ANPP, the sum of these parameters, ranged from 11.1 to 32.3 Mg ha−1 year−1 and averaged 19.7 ± 2.2. ANPP was weakly related to fine litterfall (r 2 = 0.176), but strongly related to growth of large trees at least 60 cm dbh (r 2 = 0.848). Adjusted ANPP after accounting for apparent “mature forest bias” in our sampling method was 17.5 ± 1.2 Mg ha−1 year−1.Relating productivity measures to soil parameters showed that spatial patterning in productivity was significantly related to soil nutrients, especially phosphorus (P). Fine litterfall increased strongly with extractable P (r 2 = 0.646), but reached an asymptote at moderate P levels, whereas biomass increment (r 2 = 0.473) and ANPP (r 2 = 0.603) increased linearly across the gradient. Biomass increment of large trees was more frequently and strongly related to nutrients than small trees, suggesting size dependency of tree growth on nutrients. Multiple linear regression confirmed the leading importance of soil P, and identified Ca as a potential co-limiting factor. Our findings strongly suggest that (1) soil nutrients, especially P, limit aboveground productivity in lowland Bornean forests, and (2) these forests play an important, but changing role in carbon cycles, as canopy tree logging alters these terrestrial carbon sinks. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Aboveground net primary production (ANPP) by the dominant macrophyte and plant community composition are related to the changing hydrologic environment and to salinity in the southern Everglades, FL, USA. We present a new non-destructive ANPP technique that is applicable to any continuously growing herbaceous system. Data from 16 sites, collected from 1998 to 2004, were used to investigate how hydrology and salinity controlled sawgrass (Cladium jamaicense Crantz.) ANPP. Sawgrass live biomass showed little seasonal variation and annual means ranged from 89 to 639 gdw m−2. Mortality rates were 20–35% of live biomass per 2 month sampling interval, for biomass turnover rates of 1.3–2.5 per year. Production by C. jamaicense was manifest primarily as biomass turnover, not as biomass accumulation. Rates typically ranged from 300 to 750 gdw m−2 year−1, but exceeded 1000 gdw m−2 year−1 at one site and were as high as 750 gdw m−2 year−1 at estuarine ecotone sites. Production was negatively related to mean annual water depth, hydroperiod, and to a variable combining the two (depth-days). As water depths and hydroperiods increased in our southern Everglades study area, sawgrass ANPP declined. Because a primary restoration goal is to increase water depths and hydroperiods for some regions of the Everglades, we investigated how the plant community responded to this decline in sawgrass ANPP. Spikerush (Eleocharis sp.) was the next most prominent component of this community at our sites, and 39% of the variability in sawgrass ANPP was explained by a negative relationship with mean annual water depth, hydroperiod, and Eleocharis sp. density the following year. Sawgrass ANPP at estuarine ecotone sites responded negatively to salinity, and rates of production were slow to recover after high salinity years. Our results suggest that ecologists, managers, and the public should not necessarily interpret a decline in sawgrass that may result from hydrologic restoration as a negative phenomenon.  相似文献   

7.
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.  相似文献   

8.
We investigated the influence of stand density [938 tree ha−1 for high stand density (HD), 600 tree ha−1 for medium stand density (MD), and 375 tree ha−1 for low stand density (LD)] on soil CO2 efflux (R S) in a 70-year-old natural Pinus densiflora S. et Z. forest in central Korea. Concurrent with R S measurements, we measured litterfall, total belowground carbon allocation (TBCA), leaf area index (LAI), soil temperature (ST), soil water content (SWC), and soil nitrogen (N) concentration over a 2-year period. The R S (t C ha−1 year−1) and leaf litterfall (t C ha−1 year−1) values varied with stand density: 6.21 and 2.03 for HD, 7.45 and 2.37 for MD, and 6.96 and 2.23 for LD, respectively. In addition, R S was correlated with ST (R 2 = 0.77–0.80, P < 0.001) and SWC (R 2 = 0.31–0.35, P < 0.001). It appeared that stand density influenced R S via changes in leaf litterfall, LAI and SWC. Leaf litterfall (R 2 = 0.71), TBCA (R 2 = 0.64–0.87), and total soil N contents in 2007 (R 2 = 0.94) explained a significant amount of the variance in R S (P < 0.01). The current study showed that stand density is one of the key factors influencing R S due to the changing biophysical and environmental factors in P. densiflora.  相似文献   

9.
Biomass and net production were measured in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, which had carried out gregarious flowering in 1969 and has been recovering vegetatively. The culm density fluctuated around an average value of 12 040 ha−1 during the research period (1985–91). Annual recruirment and mortality rates of culms were 1340 and 1133 ha−1, respectively. The mean diameter at breast height increased from 7.28 cm in 1985 to 8.68 cm in 1991, and the biomass of culms increased from 71.3 to 111.6t ha−1 over the same time period. Branch and leaf biomasses were almost constant, 10.0 and 9.4t ha−1 on average, respectively. The leaf area index of the stand was 11.6 ha ha−1, which is one of the largest values found in Japanese forests. The belowground biomass of 32.6t ha−1 for rhizomes and 14.8t ha−1 for fine roots resulted in the smaller ratio of aboveground parts to the root system (2.38) than those determined for forest stands. The amount of litterfall, excluding culms and large branches, was large (9.13t ha−1 year−1), corresponding to those measured in equatorial stands. The aboveground net production was 24.6t ha−1 year−1, larger than the average value reported for forest stands under similar weather conditions.  相似文献   

10.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   

11.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

12.
The objective of this study was to evaluate the nitrogen (N) biogeochemistry of an 18–22 year old forested watershed in western Maryland. We hypothesized that this watershed should not exhibit symptoms of N saturation. This watershed was a strong source of nitrate (NO3 ) to the stream in all years, with a mean annual export of 9.5 kg N ha−1 year−1 and a range of 4.4–18.4 kg N ha−1 year−1. During the 2001 and 2002 water years, wet deposition of inorganic N was 9.0 kg N ha−1 year−1 and 6.3 kg N ha−1 year−1, respectively. Watershed N export rates in 2001 and 2002 water years were 4.2 kg N ha−1 year−1 and 5.3 kg N ha−1 year−1, respectively. During the wetter water years of 2003 and 2004, the watershed exported 15.0 kg N ha−1 year−1 and 18.4 kg N ha−1 year−1, rates that exceeded annual wet deposition of N by a factor of two (7.5 kg N ha−1 year−1 in 2003) and three (5.5 kg N ha−1 year−1 in 2004). Consistent with the high rates of N export, were high concentrations (2.1–3.3%) of N in foliage, wood (0.3%) and fine roots, low C:N ratios in the forest floor (17–24) and mineral soil (14), high percentages (83–96%) of the amount of mineralized N that was nitrified and elevated N concentrations (up to 3 mg N l−1) in soil solution. Although this watershed contained a young aggrading forest, it exhibited several symptoms of N saturation commonly observed in more mature forests.  相似文献   

13.
Aboveground net production rates of the subalpine stone pine (Pinus pumila) forests in central Japan were estimated by the summation method; net production was defined as the sum of annual biomass increment and annual loss due to death. In the two pine stands of different scrub heights, P1 (200 cm) and P2 (140 cm), aboveground biomass reached 177 and 126 ton ha−1, respectively. Leaf biomass was about 14 ton ha−1 in each stand. The estimates of aboveground net production during the 2 year period (1987–1989) averaged 4.1 and 3.7 ton ha−1 y−1 in P1 and P2, respectively, which were at the lowest among the pine forests in the world. Two indices of efficiency of energy fixation, that is, the ratio of net production to the total radiation during a growing season and the ratio of net production to total radiation per unit of leaf weight, were evaluated. Both efficiency indices for the twoP. pumila stands fell in the range obtained for other Japanese evergreen conifer forests. This suggested that the low annual net production of the stone pine stands were mainly due to a limitation in the length of the growing season. The pine forests were also characterized by a small allocation (about 17%) of aboveground net production into biomass increment, in comparison with other evergreen conifer forest types. Annual net carbon gain in theP. pumila forests was suggested to be largely invested in leaf production at the expense of the growth of woody parts.  相似文献   

14.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

15.
Root turnover in a beech and a spruce stand of the Belgian Ardennes   总被引:8,自引:0,他引:8  
The theoretical basis of fine root turnover estimation in forest soils is discussed, in relation to appropriate experimental techniques of measurement. After sequential coring, the correct expression is the sum of significant positive increments of live and dead roots of the various diameter categories, to which the transfer of dead roots to organic matter derived from roots, OMDR, has to be added. This should not be confounded with dead root mineralization. The transfer rates should first be estimated in root dimensions and not in weight of dry matter. The measurements were carried out in a 120 year old beech (Fagus sylvatica L.) stand and a 35 year old Norway spruce (Picea abies Karst) stand, in the Eastern Ardennes, Belgium. The turnover rate of fine roots (diam. <5 mm) was 4393 kg ha−1 year−1 (root dry weight), including 711.2 kg ha−1 year−1 for dead root transfer to OMDR, for beech. For spruce, turnover rate was 7011 kg ha−1 year−1 (root dry weight), including 1498 kg ha−1 year−1 for dead root transfer to OMDR. Under beech, there was a slight root density increase in spring. No seasonal fluctuations were observed under spruce, but a strong irreversible drop in live root growth was found in the later season 1980–1981, corresponding to a decrease of tree height growth and trunk radius increment. Turnover rates were further expressed in dry weight and in amounts of elements (kg ha−1 year−1) (Ca, Mg, K, Na, Al, N, P, S). Correlative relations between root dimensions and dry weight and element concentrations show that the derived values, and in particular root specific density (dry weight volume−1) vary according to species, root category, and seasonal sampling. Various schemes of seasonal variations of root growth, described in Europe, show that the major dependance on general climate is obscured by environmental factors (soil, exposure, species). It is suggested that root density fluctuation approach the steady state on an annual basis under mild Atlantic conditions.  相似文献   

16.
Aboveground biomass and litterfall ofPinus pumila scrubs, growing on the Kiso mountain range in central Japan, were investigated from 1984 to 1985. The biomass of two research plots (P1 and P2) with different scrub heights was estimated by two methods, the stratified clip technique and the allometric method. Aboveground total biomass estimated by the latter method reached 181 ton d.w. ha−1 in P1 and 132 ton d.w. ha−1 in P2. Creeping stems contributed to about half of the total biomass. Although estimates of woody organs differed between the two plots, leaf biomass estimates were almost the same at 15.5 ton d.w. ha−1. The canopies of the twoP. pumila scrubs were characterized by a large mean leaf area density of 5.0 m2 m−3. Despite this large area density, relatively moderate attenuation of light intensity was observed. Specific leaf area generally increased with reduced leaf height. Annual total litterfall was estimated to be 3.60 ton d.w. ha−1 yr−1 in P1 and 2.39 ton d.w. ha−1 yr−1 in P2. Annual leaf fall in both plots was approximately 2.0 ton d.w. ha−1 yr−1. Leaves fell mainly in early autumn. Annual loss rates of branches, estimated as the sum of annual branch litterfall and the amount of newly formed attached dead branches, were 0.29 ton d.w. ha−1 yr−1 in P1 and 0.37 ton d.w. ha−1 yr−1 in P2.  相似文献   

17.
Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ∼116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ± 21 g m−2 (mean ± 1SE) and vascular ANPP had recovered to 138 ± 32 g m−2 y−1, which was not different than that of a nearby unburned stand (160 ± 48 g m−2 y−1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ± 180 (dry) and 4008 ± 233 g m−2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ± 68 g m−2 y−1 in the mature site, but in the dry chronosequence it peaked at 410 ± 43 g m−2 y−1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Reliable and objective estimations of specific leaf area (SLA) and leaf area index (LAI) are essential for accurate estimates of the canopy carbon gain of trees. The variation in SLA with needle age and position in the crown was investigated for a 73-year-old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Allometric equations describing the projected needle area of the entire crown were developed, and used to estimate stand needle area. SLA (cm2 g−1) as significantly influenced by the position in the crown and by needle age (current-year versus 1-year-old needles). SLA increased significantly from the top to the bottom of the crown, and was significantly higher near the interior of the crown as compared to the crown edge. SLA of current-year needles was significantly higher than that of 1-year-old needles. Allometric relationships of projected needle area with different tree characteristics showed that stem diameter at breast height (DBH), tree height and crown depth were reliable predictors of projected needle area at the tree level. The allometric relationships between DBH and projected needle area at the tree level were used to predict stand-level needle area and estimate LAI. The LAI was 1.06 (m2 m−2) for current-year needles and 0.47 for 1-year-old needles, yielding a total stand LAI of 1.53.  相似文献   

19.
Changes of the soil chemical status during the recent 22–30 years at two historically degraded forest sites in southern Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.) stands were studied by repeated soil inventories conducted in 1974, 1982–1984, 1994, and 2004 on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, the nutritional status of the stands at all plots was monitored from 1964 until 2004 by annual or bi-annual analysis of current-year foliage, and stand growth was assessed by repeated stand inventories carried out in 3- to 9-year intervals. For both sites, a statistically significant systematic decrease of the forest floor C/N ratio between 1974 and 2004 from 35.4 to 29.2 (Pfaffenwinkel) and from 36.5 to 23.0 (Pustert) was observed. The soils at both sites also showed a considerable accumulation of organic carbon (210 and 400 kg C ha−1 year−1 for Pfaffenwinkel and Pustert, respectively) and nitrogen (13 and 18 kg N ha−1 year−1). In addition, the mineral topsoil at both sites has acidified considerably, indicated by significantly decreased pH values (Pustert only; mean decrease 0.1 units per decade), base saturation, and base cation stocks. The trend of N enrichment and base cation loss in the soils is mirrored by the trends of stand nutrition at both sites, which are characterized by improved N nutrition and reduced supply with K, Mg (Pustert only), and Ca. The results confirm findings of other studies indicating a recent N eutrophication and acidification of forest soils in Central Europe and southern Scandinavia. Since soils with historic degradation due to earlier non-sustainable forest utilization are widespread in Central Europe, the results obtained on our study sites probably apply for large forested areas, suggesting a significant potential of Central European forests to sequester atmospheric carbon and nitrogen not only in stand biomass, but also in the soil.  相似文献   

20.
Large disturbances such as the 1988 Yellowstone fires produce considerable spatial heterogeneity in ecosystem processes across landscapes, in part by affecting vegetation structure. However, the persistence of this heterogeneity with time since disturbance, and thus the role of large disturbances in shaping the heterogeneity of ecosystem processes over large spatial and temporal scales, remains unclear. Such an inquiry requires that variability as well as mean conditions of forest structure and growth be examined if changes are to be projected for heterogeneous postdisturbance landscapes. We studied a chronosequence of unburned, mature lodgepole pine stands (stand ages ranging from 50 to 300 or more years) to examine the variability in stand density, leaf-area index (LAI), and stem growth [basal area increment (BAI), a surrogate for aboveground net primary productivity (ANPP)] with stand age, the relationships between these factors, and how these factors were related to stand and site characteristics. Variation in LAI and BAI was explained primarily by differences in stand density and age (r2=0.51 for both LAI and BAI), and both LAI and BAI were most variable in the youngest age class [coefficient of variation (CV), 38% and 41% for LAI and BAI]. The relationship between LAI or BAI and stand density was significantly weaker (r2 < 0.20) at stand ages characterized by canopy closure (50–175 years), suggesting that stand structure and production are closely linked. Thus, the spatial variability of stand production, which is initially very high following large fires in this landscape, is detectable for over a century before successional changes in forest structure greatly affect the initial postdisturbance landscape pattern of stand production. Given the recent focus on spatial heterogeneity of ecosystem processes across large landscapes, projecting changes in postdisturbance patterns of stand production has very strong significance for ecosystem science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号