首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effectiveness of cationic microparticles with adsorbed DNA at inducing immune responses was investigated in mice, guinea pigs, and rhesus macaques. Plasmid DNA vaccines encoding human immunodeficiency virus (HIV) Gag and Env adsorbed onto the surface of cationic poly(lactide-coglycolide) (PLG) microparticles were shown to be substantially more potent than corresponding naked DNA vaccines. In mice immunized with HIV gag DNA, adsorption onto PLG increased CD8(+) T-cell and antibody responses by approximately 100- and approximately 1,000-fold, respectively. In guinea pigs immunized with HIV env DNA adsorbed onto PLG, antibody responses showed a more rapid onset and achieved markedly higher enzyme-linked immunosorbent assay and neutralizing titers than in animals immunized with naked DNA. Further enhancement of antibody responses was observed in animals vaccinated with PLG/DNA microparticles formulated with aluminum phosphate. The magnitude of anti-Env antibody responses induced by PLG/DNA particles was equivalent to that induced by recombinant gp120 protein formulated with a strong adjuvant, MF-59. In guinea pigs immunized with a combination vaccine containing HIV env and HIV gag DNA plasmids on PLG microparticles, substantially superior antibody responses were induced against both components, as measured by onset, duration, and titer. Furthermore, PLG formulation overcame an apparent hyporesponsiveness of the env DNA component in the combination vaccine. Finally, preliminary data in rhesus macaques demonstrated a substantial enhancement of immune responses afforded by PLG/DNA. Therefore, formulation of DNA vaccines by adsorption onto PLG microparticles is a powerful means of increasing vaccine potency.  相似文献   

2.
Vaccines are considered by many to be one of the most successful medical interventions against infectious diseases. But many significant obstacles remain, such as optimizing DNA vaccines for use in humans or large animals. The amount of doses, route and easiness of administration are also important points to consider in the design of new DNA vaccines. Heterologous prime-boost regimens probably represent the best hope for an improved DNA vaccine strategy. In this study, we have shown that heterologous prime-boost vaccination against tuberculosis (TB) using intranasal BCG priming/DNA-HSP65 boosting (BCGin/DNA) provided significantly greater protection than that afforded by a single subcutaneous or intranasal dose of BCG. In addition, BCGin/DNA immunization was also more efficient in controlling bacterial loads than were the other prime-boost schedules evaluated or three doses of DNA-HSP65 as a naked DNA. The single dose of DNA-HSP65 booster enhanced the immunogenicity of a single subcutaneous BCG vaccination, as evidenced by the significantly higher serum levels of anti-Hsp65 IgG2a Th1-induced antibodies, as well as by the significantly greater production of IFN-γ by antigen-specific spleen cells. The BCG prime/DNA-HSP65 booster was also associated with better preservation of lung parenchyma. The improvement of the protective effect of BCG vaccine mediated by a DNA-HSP65 booster suggests that our strategy may hold promise as a safe and effective vaccine against TB.  相似文献   

3.

Background

Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65.

Methodology/Principal Findings

Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-γ production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-β and IL-10 production, which could be associated with long-term protection.

Conclusions/Significance

We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections.  相似文献   

4.
Immunogenicity of Plague Vaccines in Mice and Guinea Pigs   总被引:2,自引:0,他引:2       下载免费PDF全文
The median effective doses (ED50) of 28 lots of killed Pasteurella pestis strain 195/P vaccine were determined in mice and guinea pigs. Mice were injected with vaccine alone, whereas guinea pigs received vaccine suspended in incomplete Freund's adjuvant. Potency ratios of vaccines were obtained by comparing the ED50 of the test with that of a reference vaccine. Mean potency ratios of 1.82 ± 0.50 in mice and 3.22 ± 0.56 in guinea pigs were obtained, and the difference between these means was significant, P = <0.01. The number of organisms in the challenge dose did not significantly affect the ED50 of a vaccine in guinea pigs. However, irrespective of vaccinating route, nearly 1,000 times as much vaccine was required in the absence of adjuvant as in its presence to produce comparable protective indexes in the guinea pig. The response of guinea pigs did not offer any improvement over mice in evaluating the efficacy of plague vaccines.  相似文献   

5.
The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.The filoviruses Marburgvirus (MARV) and Ebolavirus (EBOV) are endemic primarily to central Africa and cause a severe form of viral hemorrhagic fever. Of all the filovirus strains or species, the Angola strain of MARV is associated with the highest mortality rate (90%) in humans observed to date (26). An increase in natural filovirus outbreak frequency over the past decade and the potential for use to cause deliberate human mortality have focused attention on the need for therapeutics and vaccines against filoviruses. While regulatory pathways have been proposed to facilitate licensing of a preventive vaccine against potently lethal pathogens such as these, there is as yet no licensed vaccine for use in humans, and efforts remain targeted to the optimization of vaccine performance in nonhuman primates (NHP) since this animal model recapitulates many aspects of disease pathogenesis observed in humans.Genetic vaccines are a promising approach for immunization against pathogens that are rapidly changing due to natural evolution, cross-species transmission, or intentional modification. Gene-based vaccines are produced rapidly and can be delivered by a variety of vectors. DNA vectors are advantageous because they are inherently safe and stable and can be used repeatedly without inducing antivector immune responses. However, while filovirus DNA vaccines have demonstrated efficacy in small animal models, efforts to induce protective immunity by injection of plasmid DNA alone into NHP have yielded less encouraging results. EBOV DNA vectors generate immune protection in mice and guinea pigs, but this has not been demonstrated in NHP unless DNA immunization is boosted with a viral vector vaccine (23). MARV DNA fully protects mice and guinea pigs but provides only partial protection in NHP (17). The discordant results between rodent and primate species may be due to the use of slightly modified infectious challenge viruses in rodent models or may reflect underlying differences in vaccine performance and the mechanisms of immune protection between rodents and NHP.In the current study, we examined whether DNA plasmid-based vaccines could be improved to increase potency in NHP and compared immunogenicity of this vaccine modality with those of viral vector and prime-boost approaches. DNA-vectored vaccines were modified by codon optimizing gene target inserts for enhanced expression in primates. These vectors induced antigen-specific cellular and humoral immune responses similar to immunization using a recombinant adenoviral vector and provided protection after lethal challenge with MARV Angola. However, macaques vaccinated with DNA vectors exhibited clinical symptoms associated with MARV hemorrhagic fever (MHF) that were absent in NHP receiving a single inoculation with recombinant adenovirus (rAd) vectors, suggesting qualitative differences in the immune responses elicited by the different modalities.  相似文献   

6.

Background

Efficient control of tuberculosis (TB) requires development of strategies that can enhance efficacy of the existing vaccine Mycobacterium bovis Bacille Calmette Guerin (BCG). To date only a few studies have explored the potential of latency-associated antigens to augment the immunogenicity of BCG.

Methods/Principal Findings

We evaluated the protective efficacy of a heterologous prime boost approach based on recombinant BCG and DNA vaccines targeting α-crystallin, a prominent latency antigen. We show that “rBCG prime - DNA boost” strategy (R/D) confers a markedly superior protection along with reduced pathology in comparison to BCG vaccination in guinea pigs (565 fold and 45 fold reduced CFU in lungs and spleen, respectively, in comparison to BCG vaccination). In addition, R/D regimen also confers enhanced protection in mice. Our results in guinea pig model show a distinct association of enhanced protection with an increased level of interleukin (IL)12 and a simultaneous increase in immuno-regulatory cytokines such as transforming growth factor (TGF)β and IL10 in lungs. The T cell effector functions, which could not be measured in guinea pigs due to technical limitations, were characterized in mice by multi-parameter flow cytometry. We show that R/D regimen elicits a heightened multi-functional CD4 Th1 cell response leading to enhanced protection.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based R/D regimen over BCG. Our observations from guinea pig studies indicate a crucial role of IL12, IL10 and TGFβ in vaccine-induced protection. Further, characterization of T cell responses in mice demonstrates that protection against TB is predictable by the frequency of CD4 T cells simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and IL2. We anticipate that this study will not only contribute toward the development of a superior alternative to BCG, but will also stimulate designing of TB vaccines based on latency antigens.  相似文献   

7.
Mice and guinea pigs were intranasally immunized with either recombinant lipoprotein 20 or Helicobacter pylori outer membrane vesicles (OMV). Cholera toxin was used as mucosal adjuvant. In mice, both vaccines elicited systemic and local IgG responses, which correlated with significantly lower levels of H. pylori colonization. In contrast, only OMV proved immunogenic in guinea pigs, with the development of both systemic and local immune responses. These antibodies did not, however, correlate with protection in these animals, which suggests that vaccine formulation is as important as choice of antigen in the development of an H. pylori vaccine.  相似文献   

8.
Gamma-Irradiated Venezuelan Equine Encephalitis Vaccines   总被引:5,自引:4,他引:1       下载免费PDF全文
The efficacy of Formalin-inactivated Venezuelan equine encephalitis (VEE) vaccine has been reported to be low for man. Although a live VEE vaccine has been shown to be highly effective for the protection of laboratory workers, local and systemic reactions have occurred in approximately 20% of inoculated individuals. Therefore, studies were initiated in an attempt to produce an inactivated vaccine of high potency with low toxicity. Inactivated VEE vaccines were prepared by exposing virus suspensions to 8 x 10(6) or 10 x 10(6) r of gamma radiation. Irradiated VEE vaccines prepared from virus suspensions produced in Maitland-type chick embryo (MTCE) cell cultures and in monolayer cultures of human diploid strain WI-38 cells were highly immunogenic for mice and guinea pigs. Guinea pigs vaccinated with a series of three inoculations of vaccine (MTCE) survived challenge with at least 10(8.4) mouse intracerebral 50% lethal doses of VEE virus. Irradiated vaccines induced high levels of serum-neutralizing and hemagglutinin-inhibiting antibodies in guinea pigs and rabbits. These findings suggest that ionizing radiation may be effective in the preparation of an inactivated VEE vaccine.  相似文献   

9.

Background

Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated.

Methods

Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA.

Results

This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life.

Conclusion

These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.  相似文献   

10.
Cancer vaccines targeting 'self' antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of dsRNA-dependent protein kinase R (PKR). Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2',5'-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA.  相似文献   

11.
Polytope approach of genetic immunization is a promising strategy for the prevention of infectious disease as it is capable of generating effective cell mediated immunity by delivering the T cell epitopes assembled in series. Leishmaniasis is a significant world wide health problem for which no vaccine exists. In this study we have compared immunogenicity and efficacy of three types of DNA vaccines: single antigen Gp63 (Gp63/pcDNA), polytope (Poly/pcDNA) and Polytope fused with hsp70 (Poly/hsp/pcDNA) against visceral leishmaniasis in susceptible BALB/c mice. Mice vaccinated with these plasmids generated strong Th1 immune response as seen by dominating IFN-γ over IL-10 cytokine. Interestingly, cytotoxic responses generated by polytope DNA plasmid fused with hsp70 of Leishmania donovani were significantly higher when compared to polytope and single antigen Gp63 vaccine. Challenge studies revealed that the parasite load in liver and spleen was significantly lower with Poly/hsp/pcDNA vaccination compared to other vaccines. Therefore, our study indicates that polytope DNA vaccine is a feasible, practical and effective approach for visceral leishmaniasis.  相似文献   

12.
Subunit vaccines containing universal tumor associated antigens (TAAs) present an attractive treatment modality for cancer primarily due to their safety and potential to generate long-term immunological responses that can safeguard against recurrences. However, TAA-based subunit vaccines require potent adjuvants for therapeutic efficacy. Using a novel form of the 4-1BBL costimulatory molecule, SA-4-1BBL, as the adjuvant of choice, we previously demonstrated that a single vaccination with survivin (SVN) as a bona fide self TAA was effective in eradicating weakly immunogenic 3LL tumors in >70% of C57BL/6 mice. The present study was designed to i) assess the therapeutic efficacy of a prime-boost vaccination and ii) investigate the mechanistic basis of vaccine efficacy. Our data shows that a prime-boost vaccination strategy was effective in eradicating 3LL lung carcinoma in 100% of mice. The vaccine efficacy was correlated with increased percentages of CD8+ T cells expressing IFN-γ as well as potent killing responses of both CD8+ T and NK cells in the absence of detectable antibodies to ssDNA as a sign of autoimmunity. Antibody depletion of CD8+ T cells one day before vaccination completely abrogated therapeutic efficacy, whereas depletion of CD4+ T cells had no effect. Importantly, NK cell depletion had a moderate (∼50% reduction), but significant (p<0.05) effect on vaccine efficacy. Taken together, these results shed light on the mechanistic basis of the SA-4-1BBL/SVN subunit vaccine formulation in a lung carcinoma model and demonstrate the robust therapeutic efficacy of the prime-boost immunization strategy with important clinical implications.  相似文献   

13.
DNA vaccines against botulinum neurotoxin (BoNTs) induce protective humoral immune responses in mouse model, but when compared with conventional vaccines such as toxoid and protein vaccines, DNA vaccines often induce lower antibody level and protective efficacy and are still necessary to increase their potency. In this study we evaluated the potency of aluminum phosphate as an adjuvant of DNA vaccines to enhance antibody responses and protective efficacy against botulinum neurotoxin serotypes A and B in Balb/c mice. The administration of these individual and bivalent plasmid DNA replicon vaccines against botulinum neurotoxin serotypes A and B in the presence of aluminum phosphate improved both antibody responses and protective efficacy. Furthermore, formulation of conventional plasmid DNA vaccines encoding the same Hc domains of botulinum neurotoxin serotypes A and B with aluminum phosphate adjuvant increased both antibody responses and protective efficacy. These results indicate aluminum phosphate is an effective adjuvant for these two types of DNA vaccines (i.e., plasmid DNA replicon vaccines and conventional plasmid DNA vaccines), and the vaccine formulation described here may be an excellent candidate for further vaccine development against botulinum neurotoxins.  相似文献   

14.
本实验室先前分别将构建的猪瘟病毒E2基因重组腺病毒疫苗(rAdV-E2)和猪瘟甲病毒复制子载体DNA疫苗(pSFV1CS-E2)在猪体上进行了免疫效力评价,结果显示,rAdV-E2免疫组所有猪虽然在加强免疫后产生了比较高的猪瘟特异性中和抗体,但攻毒后个别猪表现短期体温升高和轻微病变;而pSFV1CS-E2免疫组猪只虽然在攻毒后得到了保护,但产生的抗体水平较低。为了增强猪瘟甲病毒复制子载体疫苗和猪瘟重组腺病毒活载体疫苗的免疫效果,本研究应用了复制子载体DNA疫苗初免和重组腺病毒疫苗加强免疫的初免-加强(Prime-boost)免疫策略,并在猪体上进行了评价。结果显示,所有免疫猪均产生了高水平的猪瘟特异性的中和抗体,用猪瘟强毒攻击后,pSFV1CS-E2初免组所有猪(n=5)均没有出现任何猪瘟的临床症状和病理变化,攻毒后在猪血液中也没有检测到猪瘟病毒RNA,而重组腺病毒初免组(n=5)有一头猪出现短期发热和病毒血症及轻微病理变化。这表明初免-加强免疫策略能显著提高重组疫苗的免疫效力。  相似文献   

15.
Genetic modification of adeno-associated virus (AAV) capsids has previously been exploited to redirect viral tropism. Here we demonstrate that engineering of AAV capsids as scaffolds for antigen display augments antigen-specific immunogenicity. Combining antigen display with vector-mediated overexpression resulted in a single-shot prime-boost vaccine. This new class of vaccines induced immune responses significantly faster and an IgG antibody pool of higher avidity than conventional vectors, highlighting the potency of capsid modification in vaccine development.  相似文献   

16.
BackgroundA novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models.MethodsAntibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays. T-helper cell responses and IgG subclass responses in mice were analyzed by ELISPOT and ELISA, respectively. Vaccine efficacy against lethal challenge with wild-type H7N9 virus was evaluated in immunized mice. H7N9-specific antibody responses induced in mice and guinea pigs were compared to those induced by a licensed whole-virus pandemic H1N1 (H1N1pdm09) vaccine.ResultsThe whole-virus H7N9 vaccine induced dose-dependent H7N9-specific HI, MN and NAi antibodies in mice and guinea pigs. Evaluation of T-helper cell responses and IgG subclasses indicated the induction of a balanced Th1/Th2 response. Immunized mice were protected against lethal H7N9 challenge in a dose-dependent manner. H7N9 and H1N1pdm09 vaccines were similarly immunogenic.ConclusionsThe induction of H7N9-specific antibody and T cell responses and protection against lethal challenge suggest that the Vero cell culture-derived whole-virus vaccine would provide an effective intervention against the H7N9 virus.  相似文献   

17.
To develop a single-shot vaccine containing diphtheria toxoid (DT) with a sufficient immune response, poly(lactide-co-glycolide) (PLGA) microspheres were prepared by water-in-oil-in-water double emulsification and solvent extraction techniques using low or high-molecular-weight PLGA (LMW-MS or HMW-MS). Stearic acid (SA) was introduced to HMW-MS (HMW/SA-MS) as a release modulator. Mean particle sizes (dvs, μm) varied between the prepared microspheres, with LMW-MS, HMW-MS, and HMW/SA-MS having the sizes of 29.83, 110.59, and 69.5 μm, respectively; however, the protein entrapment and loading efficiency did not vary, with values of 15.2–16.8 μg/mg and 61–75%, respectively. LMW-MS showed slower initial release (~?2 weeks) but faster and higher release of antigen during weeks 3~7 than did HMW-MS. HMW/SA-MS showed rapid initial release followed by a continuous release over an extended period of time (~?12 weeks). Mixed PLGA microspheres (MIX-MS), a combination of HMW/SA-MS and LMW-MS (1:1), demonstrated a sufficient initial antigen release and a subsequent boost release in a pulsatile manner. Serum antibody levels were measured by ELISA after DT immunization of Balb/c mice, and showed a greater response to MIX-MS than to alum-adsorbed DT (control). A lethal toxin challenge test with MIX-MS (a DT dose of 18 Lf) using Balb/c mice revealed complete protection, indicating a good candidate delivery system for a single-shot immunization.  相似文献   

18.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

19.

Background

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen causing an important disease in ruminants often transmitted to humans after epizootic outbreaks in African and Arabian countries. To help combat the spread of the disease, prophylactic measures need to be developed and/or improved.

Methodology/Principal Findings

In this work, we evaluated the immunogenicity and protective efficacy of recombinant plasmid DNA and modified vaccinia virus Ankara (rMVA) vectored vaccines against Rift Valley fever in mice. These recombinant vaccines encoded either of two components of the Rift Valley fever virus: the viral glycoproteins (Gn/Gc) or the nucleoprotein (N). Following lethal challenge with live RVFV, mice immunized with a single dose of the rMVA-Gn/Gc vaccine showed no viraemia or clinical manifestation of disease, but mounted RVFV neutralizing antibodies and glycoprotein specific CD8+ T-cell responses. Neither DNA-Gn/Gc alone nor a heterologous prime-boost immunization schedule (DNA-Gn/Gc followed by rMVAGn/Gc) was better than the single rMVA-Gn/Gc immunization schedule with regards to protective efficacy. However, the rMVA-Gn/Gc vaccine failed to protect IFNAR−/− mice upon lethal RVFV challenge suggesting a role for innate responses in protection against RVFV. Despite induction of high titer antibodies against the RVFV nucleoprotein, the rMVA-N vaccine, whether in homologous or heterologous prime-boost schedules with the corresponding recombinant DNA vaccine, only conferred partial protection to RVFV challenge.

Conclusions/Significance

Given the excellent safety profile of rMVA based vaccines in humans and animals, our data supports further development of rMVA-Gn/Gc as a vaccine strategy that can be used for the prevention of Rift Valley fever in both humans and livestock.  相似文献   

20.
Mouse Potency Assay for Western Equine Encephalomyelitis Vaccines   总被引:2,自引:0,他引:2       下载免费PDF全文
A potency assay for Western equine encephalomyelitis vaccine was developed which utilized mice as the test animal instead of guinea pigs or hamsters. By immunizing several groups of mice with dilutions of the vaccine and challenging them intracerebrally with virulent virus, it was possible to determine mathematically a dose of vaccine capable of protecting 50% of the animals (ED(50)). When log dilutions of virulent virus were used to challenge mice which were immunized with dilutions of the vaccine, there was no difference among the ED(50) values for the dilutions of challenge virus. In a direct comparison of ED(50) values determined from the immunization of mice and those determined from the immunization of guinea pigs, there were no differences in the rankings of the vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号