首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
结核休眠菌是残存于人体巨噬细胞内处于代谢静止期的极微量结核分枝杆菌(MTB),了解其生物学特性和相关作用机制对MTB潜伏感染新靶点药物的研究具有重要意义。巨噬细胞作为机体固有免疫和适应性免疫的重要组成部分,是清除胞内感染的MTB的首要屏障。巨噬细胞可以通过自噬途径清除MTB,而处于休眠状态的MTB可以逃避巨噬细胞的杀伤而持续存在。此外,目前有关休眠菌如何逃逸巨噬细胞自噬的具体机制也并不十分明确,本文则对休眠菌及其与巨噬细胞自噬相关研究的最新进展作一综述。  相似文献   

2.
细胞自噬是真核生物细胞中高度保守的重要代谢途径。该途径是将细胞内有害或不需要的大分子分解并回收,从而使细胞在生长或环境改变导致的应激和压力条件下获得生存优势。近年越来越多的证据表明,非编码RNA,包括微RNA(microRNA,miRNA)和长非编码RNA(long non-coding RNA,lncRNA),在自噬过程中发挥了重要的作用。本文综述了miRNA和lncRNA在多种细胞环境中对细胞自噬的调控机制,并讨论了这些自噬相关的非编码RNA在疾病分子诊断、分类和预后中的作用,及其作为疾病治疗靶标的可能性。  相似文献   

3.
目的研究结核分枝杆菌(MTB)ESAT6-CFP10融合蛋白对小鼠巨噬细胞自噬功能的影响。方法H37Rv菌株感染小鼠巨噬细胞后加入纯化的重组ESAT6-CFP10融合蛋白,通过透射电镜检测自噬体的形成。提取细胞总RNA和蛋白,以实时定量RT-PCR及Western blot方法检测自噬相关基因(atg)分子水平和蛋白表达水平。结果ESAT6-CFP10融合蛋白可抑制小鼠巨噬细胞自噬体的形成,并导致atg分子表达水平下降,其中atg8表达量下降最为明显。结论MTB ESAT6-CFP10融合蛋白通过调控atg分子表达水平影响小鼠巨噬细胞自噬功能。  相似文献   

4.
细胞自噬是细胞在应激条件下降解胞内受损成分的过程,涉及多信号分子参与。在疾病发生、发展过程中,细胞自噬既可抑制或延缓疾病发展,还可使病情恶化,故寻找在不同阶段调控细胞自噬作用的因子探究其有效作用靶点具有重要意义。非编码RNA(noncoding RNA,ncRNA)是从基因组中转录出来的不行使编码蛋白质作用的一类RNA的总称。进几年来,越来越多不同ncRNA被发现,并在动物机体生理和病理过程中发挥着重要的调控作用。已有研究表明,ncRNA在细胞自噬发生过程起到重要的调控作用。从微小RNA(MicroRNA,miRNA)、长链非编码RNA(Long noncoding RNAs,lncRNA)、环状RNA(CircularRNA,circRNA)几方面综述了ncRNA在细胞自噬通路中的调节作用,为癌症等疾病治疗以及分子标记提供理论指导和新思路。  相似文献   

5.
刘晓宇  陈芳艳  韩黎 《微生物学报》2018,58(8):1340-1348
LC3相关吞噬作用(LC3-associated phagocytosis,LAP)是一种宿主细胞吞噬和降解病原体的高效过程。近年来越来越多的研究表明,LAP在清除病原微生物感染过程中具有非常重要的作用,其作用机制不同于传统的吞噬作用和自噬作用。在外源刺激下,宿主细胞通过招募自噬相关的蛋白实现LC3向单层膜吞噬泡的聚集,从而提高其吞噬和杀伤病原体的效率。不同病原微生物应对LAP的杀伤作用的方式是不同的,本文对LAP发生的一般规律、各种微生物感染过程中LAP发生的不同情况及其近期研究进展予以综述。  相似文献   

6.
衣原体是一种专性胞内寄生的原核细胞型微生物,是感染人和动物常见的病原体之一,能引起人类和动物罹患多种疾病。miRNA是一类内源性非编码单链RNA分子,在细胞的增殖与分化、自噬与凋亡、病毒感染等生理和病理过程中发挥重要作用。近年来相关研究发现,衣原体感染后能引起宿主的miRNA表达水平发生改变,其不仅调节宿主细胞线粒体网络结构进而影响衣原体的生长发育,还作为区分不同衣原体变体引起感染的早期生物标志物。miRNA参与了衣原体感染过程的调控,但miRNA在衣原体感染中的作用机制尚不完全清楚。本文就miRNA在衣原体感染中的作用进行简要综述。  相似文献   

7.
EV71诱导人神经细胞SH-SY5Y自噬的分子机制   总被引:1,自引:1,他引:0  
【背景】EV71感染所致的重症手足口病易导致神经系统并发症,使患儿预后较差,甚至死亡。【目的】从EV71可诱导神经细胞自噬这一现象出发,探索该病毒诱导神经细胞自噬的miRNA机制,探讨EV71损伤神经细胞可能的分子机制。【方法】通过RT-PCR及Westernblot技术,在感染EV71病毒的人神经母细胞瘤细胞SH-SY5Y中检测细胞自噬变化;通过芯片分析细胞感染前后差异表达的miRNA分子,再使用miRNA mimics调节工具明确与EV71诱导神经细胞自噬有关的miRNA分子。【结果】EV71可诱导SH-SY5Y细胞自噬增加,下调细胞内miRNA29b(miR29b)分子的表达水平;当上调细胞内miR29b的表达后,EV71诱导细胞自噬增加的现象可被逆转,病毒复制水平下降。【结论】EV71诱导神经细胞自噬是通过下调miR29b分子的表达水平实现;miR29b不仅与自噬相关,它与EV71病毒复制也存在密切关系。因此,该研究不仅有助于阐明EV71导致神经系统损伤的具体分子机制,还为miR29b成为治疗EV71感染可能的新药物靶点奠定了理论基础。  相似文献   

8.
LC3相关的吞噬作用(LC3-associated phagocytosis, LAP)是由LC3及吞噬了病原体的单层膜吞噬泡所介导的巨噬细胞的吞噬作用。近年来越来越多的研究表明,LAP在清除真菌感染过程中具有非常重要的作用,其作用机制不同于经典的细胞吞噬和自噬。该文旨在比较LAP与经典自噬的区别,回顾LAP与真菌感染相关的新近研究进展,总结LAP在真菌感染中的作用。  相似文献   

9.
微小RNA (microRNA, miRNA)是一种非编码的小分子RNA,广泛参与基因转录后调控,其表达或功能异常在肿瘤的发生发展中起重要作用。细胞凋亡是程序性死亡的一种形式,能有效地清除受损细胞。细胞凋亡的失调不仅与肿瘤的发生发展有关,而且与肿瘤对治疗的抵抗有关。微小RNA可通过细胞凋亡经典通路(包括线粒体凋亡通路、死亡受体凋亡通路、内质网应激凋亡通路)发挥抗细胞凋亡或促细胞凋亡作用。该文主要对miRNA在肿瘤中调控细胞凋亡的相关研究进展作一综述。  相似文献   

10.
线粒体自噬(mitophagy)是指细胞通过自噬机制选择性清除多余或损伤线粒体的过程,对于线粒体质量控制以及细胞生存具有重要作用。在线粒体自噬的过程中,线粒体自噬受体FUNDCl、Nix、BNIP3,接头蛋白OPTN、NDP52以及去泛素化酶UPS30、UPS8等发挥了重要的调控作用。近年来,研究发现线粒体自噬与神经退行性疾病、脑损伤以及胶质瘤相关。因此,研究线粒体自噬的分子机制具有重要意义。本文就与哺乳动物相关的线粒体自噬分子机制及最新研究进展做一综述。  相似文献   

11.
MicroRNA (miRNA) is small non-coding RNA with approximate 22 nt in length. Recent studies indicate that miRNAs play significant roles in pathogen-host interactions. Brucella organisms are Gram-negative facultative intracellular bacteria that cause Brucellosis. Brucella strains infect macrophages and establish chronic infection by altering host life activities including apoptosis and autophagy. Here, we report a comprehensive analysis of miRNA expression profiles in mock- and Brucella-infected RAW264.7 cells using high-throughput sequencing approach. In total, 344 unique miRNAs were co-expressed in the two libraries, in which 57 miRNAs were differentially expressed. Eight differentially expressed miRNAs with high abundance were subjected to further analysis. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in apoptosis, autophagy and immune response. In particular, a total of 25 target genes are involved in regulating apoptosis and autophagy, indicating that these miRNAs may play important regulatory roles in the Brucella-host interactions. Furthermore, the interactions of miR-1981 and its target genes, Bcl-2 and Bid, were validated by luciferase assay. The results show that miR-1981 mimic up-regulated the luciferase activity of psiCHECK-2 Bcl-2 3' UTR, but the luciferase activity of psiCHECK-2 Bid 3' UTR was not changed significantly. Taken together, these data provide valuable framework on Brucella induced miRNA expression in RAW264.7 cells, and suggest that Brucella may establish chronic infection by regulating miRNA expression profile.  相似文献   

12.
Trehalose 6,6′-dimycolate (TDM) is the most abundant lipid extracted from Mycobacterium tuberculosis (MTB). TDM promotes MTB survival by decreasing phagosomal acidification and phagolysosomal fusion in macrophages. Delipidation of MTB using petroleum ether removes TDM and decreases MTB survival within host cells. TDM reconstituted onto MTB restores its virulent wild-type characteristics. We investigated the role of TDM in regulating surface marker expression in MTB-infected macrophages. Macrophages were infected with wild-type, delipidated, and TDM-reconstituted MTB for 24 h and measured for changes in surface marker expression. TDM on MTB was found to specifically target MHCII, CD1d, CD40, CD80 and CD86. Both wild-type and TDM-reconstituted MTB suppressed or induced no change in expression of these surface markers, whereas delipidated MTB increased expression of the same markers. MTB-infected macrophages were also overlaid with MHCII-restricted T cell hybridomas which recognize Antigen 85B. Macrophages infected by wild-type and TDM-reconstituted MTB did not present antigen as well as delipidated MTB-infected macrophages. The evidence shown furthers supports the notion that TDM present on MTB promotes its survival and persistence in host macrophages.  相似文献   

13.
Helicobacter pylori (H. pylori) is a Gram-negative bacterium and causative agent of gastric cancer. H. pylori induce defective autophagy or inhibit it by means of CagA and vacuolating cytotoxin A (VacA) toxins leading to the gastric cancer induction. Impaired or defective autophagy leads to the accumulation of cytotoxic materials, such as ROS and P62 that lead to increased mutations in the DNA, genome instability, and risk of cancer formation. H. pylori CagA may inhibit autophagy through the c-Met-PI3k/Akt-mTOR signaling pathway. However, VacA induces autophagy by some signaling pathways. In the gastric epithelial cells, VacA is a necessary and sufficient factor for the creation of autophagy. While CagA is a negative regulator of this phenomenon, the elimination of this gene from H. pylori has increased autophagy and the production of inflammatory cytokines is reduced. In gastrointestinal cancers, some of the microRNAs (miRNAs) act as tumor suppressors and some other are oncogenes by regulating various genes expression. H. pylori can also modify autophagy through a mechanism that includes the function of miRNAs. In autophagy, oncogenic miRNAs inhibit activation of some tumor suppressor signaling pathways (e.g., ULK1 complex, Beclin-1 function, and Atg4 messaging), whereas tumor suppressor miRNAs can block the activation of oncogenic signaling pathways. For instance, Beclin-1 is negatively regulated by miRNA-376b (oncogenic miRNA) and miRNA-30a (tumor suppressor miRNA). Similarly, Atg4 by miRNA-376b (oncogenic miRNA) and miRNA-101 (tumor suppressor miRNA). So, this apparent paradox can be explained as that both Beclin-1 and Atg4 play different roles in a particular cell or tissue.  相似文献   

14.
MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the host''s miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.  相似文献   

15.
Chemokines function in the migration of circulating leukocytes to regions of inflammation, and have been implicated in chronic inflammatory conditions including mycobacterial infection. We investigated whether Leukotactin-1 (Lkn-1), a novel member of the CC-chemokines, is involved in the immune response of macrophages against Mycobacterium tuberculosis (MTB). In PMA-differentiated THP-1 cells, MTB infection increased mRNA expression of Lkn-1 in a dose-dependent manner. Lkn-1 induction peaked 12 h after infection, then declined gradually and returned to its basal level at 72 h. Secretion of Lkn-1 was elevated by MTB infection. The increase in expression and secretion of Lkn-1 caused by MTB was reduced in cells treated with inhibitors of phosphatidylinositol 3-kinase (PI3-K), 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. MTB-induced Akt phosphorylation was blocked by treatment with a PI3-K inhibitor or a PDK1 inhibitor, implying that PI3-K, PDK1, and Akt are associated with the signaling pathway that up-regulates Lkn-1 in response to MTB. These results suggest that Lkn-1 is novel member of the group of chemokines that is released by macrophages infected with MTB.  相似文献   

16.
17.
18.
《Autophagy》2013,9(1):53-58
Macrophages activate autophagy as an immediate response to Legionella pneumophila infection, but what marks the pathogen phagosome as a target for the autophagy machinery is not known. Because a variety of bacteria, parasites, viruses, and toxins that associate with the endoplasmic reticulum enter host cells by a cholesterol-dependent route, we tested the hypothesis that autophagy is triggered when microbes engage components of lipid raft domains. As the intracellular respiratory pathogen L. pneumophila or the extracellular uropathogen FimH+ Escherichia coli entered macrophages by a cholesterol-sensitive mechanism, they immediately resided in vacuoles rich in glycosylphosphatidylinositol moieties and the autophagy enzyme Atg7. As expected for autophagosomes, the vacuoles sequentially acquired the endoplasmic reticulum protein BiP, the autophagy markers Atg8 and monodansyl-cadaverine, and the lysosomal protein LAMP-1. A robust macrophage response to the pathogens was cholesterol-dependent, since fewer Atg7-rich vacuoles were observed when macrophages were pre-treated with methyl-beta-cyclodextrin or filipin. A model in which macrophages exploit autophagy to capture pathogens within the lipid raft pathway for antigen presentation prior to disposal in lysosomes is discussed.  相似文献   

19.
Leishmania is an obligate intracellular parasite that replicates inside phagolysosomes or parasitophorous vacuoles (PV) of the monocyte/macrophage lineage. It reprograms macrophages and produces a metabolic state conducive to successful infection and multiplication. MicroRNAs (miRNAs), a class of small 22 to 24 nucleotide noncoding regulatory RNAs alter the gene expression and consequently proteome output by targeting mRNAs, may play a regulatory role in modulating host cell functions. In the present study, we demonstrate the novel regulatory role of host microRNA, MIR30A-3p in modulation of host cell macroautophagy/autophagy after infection with L. donovani. Our in vitro studies showed that MIR30A-3p expression was significantly enhanced after L. donovani infection in a time-dependent manner. Transient transfection with a MIR30A-3p inhibitor followed by L. donovani infection promoted the autophagic response and decreased the intracellular parasite burden in both THP-1 cells and human monocyte-derived macrophages (HsMDM). BECN1/Beclin 1, the mammalian ortholog of yeast Vps30/Atg6, is a key autophagy-promoting protein that plays a key role in the regulation of cell death and survival. We report BECN1-dependent modulation of host cell autophagy in response to L. donovani infection. Pretreatment of L. donovani-infected macrophages with the MIR30A-3p mimic decreased and with antagomir increased the expression of BECN1 protein. We demonstrate that BECN1 is a potential target of MIR30A-3p and this miRNA negatively regulates BECN1 expression. Our present study reveals for the first time a novel role of MIR30A-3p in regulating autophagy-mediated L. donovani elimination by targeting BECN1. The present study has significant impact for the treatment of visceral leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号